Unlike conventional computed tomography, dual-energy computed tomography is a relatively novel technique that exploits ionizing radiations at different energy levels. The separate radiation sets can be achieved through different technologies, such as dual source, dual layers or rapid switching voltage. Body tissue molecules vary for their specific atomic numbers and electron density, and the interaction with different sets of radiations results in different attenuations, allowing to their final distinction. In particular, iodine recognition and quantification have led to important information about intravenous contrast medium delivery within the body. Over the years, useful post-processing algorithms have also been validated for improving tissue characterization. For instance, contrast resolution improvement and metal artifact reduction can be obtained through virtual monoenergetic images, dose reduction by virtual non-contrast reconstructions and iodine distribution highlighting through iodine overlay maps. Beyond the evaluation of the abdominal organs, dual-energy computed tomography has also been successfully employed in other anatomical districts. Although lung perfusion is one of the most investigated, this evaluation has been extended to narrowly fields of application, such as musculoskeletal, head and neck, vascular and cardiac. The potential pool of information provided by dual-energy technology is already wide and not completely explored, yet. Therefore, its performance continues to raise increasing interest from both radiologists and clinicians.

Extra-abdominal dual-energy CT applications: a comprehensive overview

Cicero G.;Ascenti G.;Blandino A.;Cavallaro M.;D'Angelo T.;Mazziotti S.
2020

Abstract

Unlike conventional computed tomography, dual-energy computed tomography is a relatively novel technique that exploits ionizing radiations at different energy levels. The separate radiation sets can be achieved through different technologies, such as dual source, dual layers or rapid switching voltage. Body tissue molecules vary for their specific atomic numbers and electron density, and the interaction with different sets of radiations results in different attenuations, allowing to their final distinction. In particular, iodine recognition and quantification have led to important information about intravenous contrast medium delivery within the body. Over the years, useful post-processing algorithms have also been validated for improving tissue characterization. For instance, contrast resolution improvement and metal artifact reduction can be obtained through virtual monoenergetic images, dose reduction by virtual non-contrast reconstructions and iodine distribution highlighting through iodine overlay maps. Beyond the evaluation of the abdominal organs, dual-energy computed tomography has also been successfully employed in other anatomical districts. Although lung perfusion is one of the most investigated, this evaluation has been extended to narrowly fields of application, such as musculoskeletal, head and neck, vascular and cardiac. The potential pool of information provided by dual-energy technology is already wide and not completely explored, yet. Therefore, its performance continues to raise increasing interest from both radiologists and clinicians.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/3150524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact