We analyzed antitumor effects of a series of curcumin analogues. Some of them were obtained by reaction of substitution involving the two phenolic OH groups of curcumin while the analogues with a substituent at C-4 was prepared following an original procedure that regards the condensation of benzenesulfenic acid onto the nucleophilic central carbon of the curcumin skeleton. We analyzed cytotoxic effects of such derivatives on two TNBC (triple negative breast cancer) cell lines, SUM 149 and MDA-MB-231, but only three of them showed an IC50 in a lower micromolar range with respect to curcumin. We also focused on these three derivatives that in both cell lines exhibited a higher or at least equivalent pro-apoptotic effect than curcumin. The analysis of molecular mechanisms of action of the curcumin derivatives under study has highlighted that they decreased NF-κB transcriptional factor activity, and consequently the expression of some NF-κB targets. Our data confirmed once again that curcumin may represent a very good lead compound to design analogues with higher antitumor capacities and able to overcome drug resistance with respect to conventional ones, even in tumors difficult to treat as TNBC.

Synthesis of curcumin derivatives and analysis of their antitumor effects in triple negative breast cancer (TNBC) cell lines

Bonaccorsi P. M.
Primo
;
Barattucci A.;Salerno T. M. G.;
2019-01-01

Abstract

We analyzed antitumor effects of a series of curcumin analogues. Some of them were obtained by reaction of substitution involving the two phenolic OH groups of curcumin while the analogues with a substituent at C-4 was prepared following an original procedure that regards the condensation of benzenesulfenic acid onto the nucleophilic central carbon of the curcumin skeleton. We analyzed cytotoxic effects of such derivatives on two TNBC (triple negative breast cancer) cell lines, SUM 149 and MDA-MB-231, but only three of them showed an IC50 in a lower micromolar range with respect to curcumin. We also focused on these three derivatives that in both cell lines exhibited a higher or at least equivalent pro-apoptotic effect than curcumin. The analysis of molecular mechanisms of action of the curcumin derivatives under study has highlighted that they decreased NF-κB transcriptional factor activity, and consequently the expression of some NF-κB targets. Our data confirmed once again that curcumin may represent a very good lead compound to design analogues with higher antitumor capacities and able to overcome drug resistance with respect to conventional ones, even in tumors difficult to treat as TNBC.
2019
File in questo prodotto:
File Dimensione Formato  
pharmaceuticals-12-00161-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.51 MB
Formato Adobe PDF
4.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150824
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact