Let Omega be a bounded smooth connected open set in R-N and let lambda(1) be the first eigenvalue of the Laplacian on Omega. We study the resonant elliptic problem-Delta u = lambda(1)u + u(s-1) - mu u(r-1), in Omega u >= 0, in Omega u(vertical bar partial derivative Omega) = 0where s is an element of]1, 2[, r is an element of]1, s[, and mu is an element of]0,+infinity[. An existence result of nonzero solutions is established via minimax and perturbation methods. Furthermore, for mu large enough, we prove a Strong Maximum Principle for the solutions of this problem. In particular, we extend to higher dimension an analogous recent result obtained in the one-dimensional case via the time-mapping method.

Existence Results and Strong Maximum Principle for a Resonant Sublinear Elliptic Problem

Anello, G
2019-01-01

Abstract

Let Omega be a bounded smooth connected open set in R-N and let lambda(1) be the first eigenvalue of the Laplacian on Omega. We study the resonant elliptic problem-Delta u = lambda(1)u + u(s-1) - mu u(r-1), in Omega u >= 0, in Omega u(vertical bar partial derivative Omega) = 0where s is an element of]1, 2[, r is an element of]1, s[, and mu is an element of]0,+infinity[. An existence result of nonzero solutions is established via minimax and perturbation methods. Furthermore, for mu large enough, we prove a Strong Maximum Principle for the solutions of this problem. In particular, we extend to higher dimension an analogous recent result obtained in the one-dimensional case via the time-mapping method.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact