This paper analyzes the thermal dependence of high-periphery GaN-on-SiC HEMT performance. The proposed approach is based on artificial neural networks (ANNs) that are used to model the scattering parameters versus temperature and frequency under a high dissipated power condition for a GaN HEMT with a gate width of 1.5 mm. The modeling results agree very well with measurements up to 65 GHz in the whole considered temperature range going from 35°C to 200°C, confirming the high accuracy and the good generalization capability of the proposed ANN approach.

Temperature Dependent Small-Signal Neural Modeling of High-Periphery GaN HEMTs

Crupi G.
Secondo
;
Caddemi A.;
2019-01-01

Abstract

This paper analyzes the thermal dependence of high-periphery GaN-on-SiC HEMT performance. The proposed approach is based on artificial neural networks (ANNs) that are used to model the scattering parameters versus temperature and frequency under a high dissipated power condition for a GaN HEMT with a gate width of 1.5 mm. The modeling results agree very well with measurements up to 65 GHz in the whole considered temperature range going from 35°C to 200°C, confirming the high accuracy and the good generalization capability of the proposed ANN approach.
2019
978-1-7281-0878-0
File in questo prodotto:
File Dimensione Formato  
2019 TELSIKS 3.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 389.52 kB
Formato Adobe PDF
389.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3158800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact