Background: Polymers play a key-role in the drug delivery technology. They allow for the controlled release of therapeutic agents under an external stimulus if a sensitive segment is suitable incorporated in the polymer matrix. Actually, polymer capsules containing noble metal nanostructures are regarded as promising light-responsive drug carriers. Among polymers, poly(methacrylic acid), PMA, offers manifold advantages: i) solubility in water, ii) coordination ability for Ag-Au nanoparticles, and iii) ability to act as capping agent. However, the preparation of Ag/PMA nanocolloids involves complex procedures the use of reagents with severe environmental impact. Objective: The goal of this work is to develop Ag/PMA nanocolloids for the controlled release of the encapsulated therapeutic agent (Sorafenib Tosylate) through a simple and cost effective synthesis process and the use of biocompatible, implantable materials. The light- and heat-responsiveness of fibrous scaffolds of Ag/PMA nanocolloids produced by electrospinning is investigated and compared with that of Ag/PMA nanocolloids. Methods: The goal of this work is to develop Ag/PMA nanocolloids for the controlled release of the encapsulated therapeutic agent (Sorafenib Tosylate) through a simple and cost effective synthesis process and the use of biocompatible, implantable materials. The light- and heat-responsiveness of fibrous scaffolds of Ag/PMA nanocolloids produced by electrospinning is investigated and compared with that of Ag/PMA nanocolloids. Results: In both the investigated systems, Ag/PMA nanocolloids and electrospun scaffolds of Ag/PMA nanocolloids, the drug release is significantly favored by the considered stimuli. Upon heat stimulus, Ag/PMA nanocolloids provide greater cumulative drug release with respect to the electrospun scaffold. Conversely, upon light stimulus, the scaffold is able to release a larger amount of Sorafenib at a faster rate, thanks to the Ag-mediated laser irradiation heating effect. Conclusion: The electrospun fibrous scaffold of Ag/PMA nanocolloids is demonstrated to be an efficient system for the remotely-triggered delivery of drug in a target area. The values of its loading efficiency (60%) and drug content (5.5%) are comparable to the ones obtained from amphiphilic copolymer structures prepared via complex chemical procedures with the use of toxic solvents and surfactant to stabilize the nanocolloids.

Electrospun Ag/PMA Nanofibrous Scaffold as a Drug Delivery System

Neri, Giulia
Primo
;
Spadaro, Salvatore;Barreca, Francesco;Neri, Fortunato;Fazio, Enza
Ultimo
2019-01-01

Abstract

Background: Polymers play a key-role in the drug delivery technology. They allow for the controlled release of therapeutic agents under an external stimulus if a sensitive segment is suitable incorporated in the polymer matrix. Actually, polymer capsules containing noble metal nanostructures are regarded as promising light-responsive drug carriers. Among polymers, poly(methacrylic acid), PMA, offers manifold advantages: i) solubility in water, ii) coordination ability for Ag-Au nanoparticles, and iii) ability to act as capping agent. However, the preparation of Ag/PMA nanocolloids involves complex procedures the use of reagents with severe environmental impact. Objective: The goal of this work is to develop Ag/PMA nanocolloids for the controlled release of the encapsulated therapeutic agent (Sorafenib Tosylate) through a simple and cost effective synthesis process and the use of biocompatible, implantable materials. The light- and heat-responsiveness of fibrous scaffolds of Ag/PMA nanocolloids produced by electrospinning is investigated and compared with that of Ag/PMA nanocolloids. Methods: The goal of this work is to develop Ag/PMA nanocolloids for the controlled release of the encapsulated therapeutic agent (Sorafenib Tosylate) through a simple and cost effective synthesis process and the use of biocompatible, implantable materials. The light- and heat-responsiveness of fibrous scaffolds of Ag/PMA nanocolloids produced by electrospinning is investigated and compared with that of Ag/PMA nanocolloids. Results: In both the investigated systems, Ag/PMA nanocolloids and electrospun scaffolds of Ag/PMA nanocolloids, the drug release is significantly favored by the considered stimuli. Upon heat stimulus, Ag/PMA nanocolloids provide greater cumulative drug release with respect to the electrospun scaffold. Conversely, upon light stimulus, the scaffold is able to release a larger amount of Sorafenib at a faster rate, thanks to the Ag-mediated laser irradiation heating effect. Conclusion: The electrospun fibrous scaffold of Ag/PMA nanocolloids is demonstrated to be an efficient system for the remotely-triggered delivery of drug in a target area. The values of its loading efficiency (60%) and drug content (5.5%) are comparable to the ones obtained from amphiphilic copolymer structures prepared via complex chemical procedures with the use of toxic solvents and surfactant to stabilize the nanocolloids.
File in questo prodotto:
File Dimensione Formato  
Current Nanomaterials 2019, 4, 32-38.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3159516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact