Soft matter systems often exhibit an intriguing morphology, related to the formation of intermediate range order structures. A rationale proposed for this behavior is the presence of competing short-range attraction and long-range repulsion. On the basis that effective interactions among the centers of mass of soft macromolecules often result in a finite short-range repulsion, we here consider a model fluid in which competing interactions supplement a repulsive core that, at difference from the models investigated up to now, has a bounded nature. We study the structural and phase behavior of this model through a theoretical approach and by computer simulation. We find that the structure factor exhibits a low-k peak, which is particularly relevant at low densities, where our system is formed by polydisperse clusters. A distinctive feature characterizing our model fluid is the presence of a peak situated between the low-k peak and the first diffraction peak. We show that this second pre-peak is associated with the enhancement of the relative population of the second coordination shell with respect to the first one, generated at intermediate densities by the long-range repulsion. As it concerns the phase behavior, the system investigated undergoes, for weak long-range repulsion, a liquid-gas phase transition. Upon increasing the strength of the long-range repulsion, such transition becomes less evident and eventually disappears. At high densities, the system undergoes freezing into a clustered solid, with multiply occupied crystal sites.
Aggregate formation in fluids with bounded repulsive core and competing interactions
MALESCIO Gianpietro
Primo
;
2020-01-01
Abstract
Soft matter systems often exhibit an intriguing morphology, related to the formation of intermediate range order structures. A rationale proposed for this behavior is the presence of competing short-range attraction and long-range repulsion. On the basis that effective interactions among the centers of mass of soft macromolecules often result in a finite short-range repulsion, we here consider a model fluid in which competing interactions supplement a repulsive core that, at difference from the models investigated up to now, has a bounded nature. We study the structural and phase behavior of this model through a theoretical approach and by computer simulation. We find that the structure factor exhibits a low-k peak, which is particularly relevant at low densities, where our system is formed by polydisperse clusters. A distinctive feature characterizing our model fluid is the presence of a peak situated between the low-k peak and the first diffraction peak. We show that this second pre-peak is associated with the enhancement of the relative population of the second coordination shell with respect to the first one, generated at intermediate densities by the long-range repulsion. As it concerns the phase behavior, the system investigated undergoes, for weak long-range repulsion, a liquid-gas phase transition. Upon increasing the strength of the long-range repulsion, such transition becomes less evident and eventually disappears. At high densities, the system undergoes freezing into a clustered solid, with multiply occupied crystal sites.File | Dimensione | Formato | |
---|---|---|---|
3161248.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.