OBJECTIVE. The purpose of this study was to compare radiation dose and image quality of single- and dual-energy CT (SECT, DECT) examinations of the chest in matched cohorts for second and third-generation dual-source CT (DSCT) systems. MATERIALS AND METHODS. We analyzed 200 patients (100 men; mean age, 61.7 ± 14.8 years old; 100 women, mean age, 59.4 ± 15.1 years old), matched by sex and body mass index, who had undergone clinically indicated contrast-enhanced chest CT. Four study groups, each consisting of 50 patients, were evaluated. Contrast-enhanced chest CT was performed using vendor-preset second-generation DSCT (group A, 120-kV SECT; group C, 80/Sn140-kV DECT) or third-generation DSCT (group B, 90-kV SECT; group D, 90/Sn150-kV DECT) protocols. Radiation dose assessment was normalized to a scan range of 27.5 cm. Image quality was objectively analyzed using dose-independent figure-of-merit (FOM) contrast-to-noise ratio (CNR) calculations and subjectively evaluated by three independent radiologists. RESULTS. Direct comparison of effective radiation dose for second-generation DSCT groups A and C showed statistically significant lower radiation dose values for DECT compared with SECT acquisition (3.2 ± 1.2 mSv vs 2.3 ± 0.6 mSv, p ≤ 0.004), but differences between third-generation SECT and DECT were not significant (1.2 ± 0.9 mSv vs 1.3 ± 0.6 mSv, p = 0.412). FOM CNR analysis revealed highest values for third-generation DECT (p ≤ 0.043). Differences in subjective image quality between the four groups were not statistically significant (p ≥ 0.179). CONCLUSION. Contrast-enhanced DECT examinations of the chest can be performed routinely with second- and third-generation DSCT systems without either increased radiation exposure or decreased image quality compared with SECT acquisition.

Comparison of radiation dose and image quality of contrast-enhanced dual-source CT of the chest: Single- Versus dual-energy and second- Versus third-generation technology

D'Angelo T.
Membro del Collaboration Group
;
2019-01-01

Abstract

OBJECTIVE. The purpose of this study was to compare radiation dose and image quality of single- and dual-energy CT (SECT, DECT) examinations of the chest in matched cohorts for second and third-generation dual-source CT (DSCT) systems. MATERIALS AND METHODS. We analyzed 200 patients (100 men; mean age, 61.7 ± 14.8 years old; 100 women, mean age, 59.4 ± 15.1 years old), matched by sex and body mass index, who had undergone clinically indicated contrast-enhanced chest CT. Four study groups, each consisting of 50 patients, were evaluated. Contrast-enhanced chest CT was performed using vendor-preset second-generation DSCT (group A, 120-kV SECT; group C, 80/Sn140-kV DECT) or third-generation DSCT (group B, 90-kV SECT; group D, 90/Sn150-kV DECT) protocols. Radiation dose assessment was normalized to a scan range of 27.5 cm. Image quality was objectively analyzed using dose-independent figure-of-merit (FOM) contrast-to-noise ratio (CNR) calculations and subjectively evaluated by three independent radiologists. RESULTS. Direct comparison of effective radiation dose for second-generation DSCT groups A and C showed statistically significant lower radiation dose values for DECT compared with SECT acquisition (3.2 ± 1.2 mSv vs 2.3 ± 0.6 mSv, p ≤ 0.004), but differences between third-generation SECT and DECT were not significant (1.2 ± 0.9 mSv vs 1.3 ± 0.6 mSv, p = 0.412). FOM CNR analysis revealed highest values for third-generation DECT (p ≤ 0.043). Differences in subjective image quality between the four groups were not statistically significant (p ≥ 0.179). CONCLUSION. Contrast-enhanced DECT examinations of the chest can be performed routinely with second- and third-generation DSCT systems without either increased radiation exposure or decreased image quality compared with SECT acquisition.
2019
File in questo prodotto:
File Dimensione Formato  
Comparison of Radiation Dose and Image Quality of Contrast-Enhanced Dual-Source CT of the Chest- Single-Versus Dual-Energy and Second-Versus Third-Generation Technology.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 768.09 kB
Formato Adobe PDF
768.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3166925
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact