Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorder with a worldwide prevalence of about 5%. The disorder is characterized by inattentive, hyperactive and impulsive behavior and is often comorbid with other neuropsychiatric conditions. Array comparative genomic hybridization (array-CGH) testing has been proved to be useful to detect chromosomal aberrations in several neuropsychiatric conditions including autism spectrum disorders (ASD) and intellectual disability (ID). The usefulness of array-CGH in the ADHD clinics is still debated and no conclusive evidence has been reached to date. We performed array-CGH in 98 children and adolescents divided in two similarly sized groups according to the clinical diagnosis: (a) one group diagnosed with ADHD as primary diagnosis; (b) the other group in which ADHD was co-morbid with ASD and/or ID. We detected pathogenetic and likely pathogenetic copy number variants (CNVs) in 12% subjects in which ADHD was co-morbid with autism and/or intellectual disability and in 8.5% subjects diagnosed with ADHD as primary diagnosis. Detection of CNVs of unknown clinical significance was similar in the two groups being 27% and 32%, respectively. Benign and likely benign CNVs accounted for 61% and 59.5% in the first and second group, respectively. Differences in the diagnostic yield were not statistically significant between the two groups (P >.05). Our data strongly suggest that array-CGH (a) is a valuable diagnostic tool to detect clinically significant CNVs in individuals with ADHD even in the absence of comorbidity with ASD and/or ID and (b) should be implemented routinely in the ADHD clinics.

Appropriateness of array-CGH in the ADHD clinics: A comparative study

Persico A. M.;
2020

Abstract

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorder with a worldwide prevalence of about 5%. The disorder is characterized by inattentive, hyperactive and impulsive behavior and is often comorbid with other neuropsychiatric conditions. Array comparative genomic hybridization (array-CGH) testing has been proved to be useful to detect chromosomal aberrations in several neuropsychiatric conditions including autism spectrum disorders (ASD) and intellectual disability (ID). The usefulness of array-CGH in the ADHD clinics is still debated and no conclusive evidence has been reached to date. We performed array-CGH in 98 children and adolescents divided in two similarly sized groups according to the clinical diagnosis: (a) one group diagnosed with ADHD as primary diagnosis; (b) the other group in which ADHD was co-morbid with ASD and/or ID. We detected pathogenetic and likely pathogenetic copy number variants (CNVs) in 12% subjects in which ADHD was co-morbid with autism and/or intellectual disability and in 8.5% subjects diagnosed with ADHD as primary diagnosis. Detection of CNVs of unknown clinical significance was similar in the two groups being 27% and 32%, respectively. Benign and likely benign CNVs accounted for 61% and 59.5% in the first and second group, respectively. Differences in the diagnostic yield were not statistically significant between the two groups (P >.05). Our data strongly suggest that array-CGH (a) is a valuable diagnostic tool to detect clinically significant CNVs in individuals with ADHD even in the absence of comorbidity with ASD and/or ID and (b) should be implemented routinely in the ADHD clinics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3167733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact