In the field of Engineering, research has conveniently exploited the fluids for energy production. The possibility to use marine renewable energy is still under development, in particular, among the wave energy converter devices the U-OWC systems are the most promising. The main objective of this work is to validate a numerical model with an experimental campaign that aims to simulate the flow field in front of the breakwater and inside the U-OWC. The tests were carried out to understand the hydrodynamic behaviour of the device in regular wave conditions, inside a flume with rectangular section, equipped by a piston-type wave-maker and a U-OWC device, reproducing the REWEC caisson installed in the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria, with a 1:13.5 scale. Measurements of the water free surface were used exclusively to validate the 2D numerical model developed through the Ansys Fluent Computational Fluid-Dynamics (CFD) Software. The numerical model solves the fluid flow field using the RANS equations, in which the air-water interaction governed by this set of partial difference equations is solved with the Finite Volume Method (FVM). In conclusion, results related to the energy efficiency of the caisson were extrapolated from the validated numerical model.
VALIDATION OF A WAVE ENERGY CONVERTER NUMERICAL MODEL THROUGH SMALL SCALE LABORATORY MEASUREMENTS
Lilia CARLO
Primo
;Sebastian BRUSCASecondo
;Filippo CUCINOTTA;Antonio GALVAGNO;Carla FARACIPenultimo
;
2020-01-01
Abstract
In the field of Engineering, research has conveniently exploited the fluids for energy production. The possibility to use marine renewable energy is still under development, in particular, among the wave energy converter devices the U-OWC systems are the most promising. The main objective of this work is to validate a numerical model with an experimental campaign that aims to simulate the flow field in front of the breakwater and inside the U-OWC. The tests were carried out to understand the hydrodynamic behaviour of the device in regular wave conditions, inside a flume with rectangular section, equipped by a piston-type wave-maker and a U-OWC device, reproducing the REWEC caisson installed in the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria, with a 1:13.5 scale. Measurements of the water free surface were used exclusively to validate the 2D numerical model developed through the Ansys Fluent Computational Fluid-Dynamics (CFD) Software. The numerical model solves the fluid flow field using the RANS equations, in which the air-water interaction governed by this set of partial difference equations is solved with the Finite Volume Method (FVM). In conclusion, results related to the energy efficiency of the caisson were extrapolated from the validated numerical model.File | Dimensione | Formato | |
---|---|---|---|
ijege-20_special_issue_carlo.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
838.85 kB
Formato
Adobe PDF
|
838.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.