In the field of Engineering, research has conveniently exploited the fluids for energy production. The possibility to use marine renewable energy is still under development, in particular, among the wave energy converter devices the U-OWC systems are the most promising. The main objective of this work is to validate a numerical model with an experimental campaign that aims to simulate the flow field in front of the breakwater and inside the U-OWC. The tests were carried out to understand the hydrodynamic behaviour of the device in regular wave conditions, inside a flume with rectangular section, equipped by a piston-type wave-maker and a U-OWC device, reproducing the REWEC caisson installed in the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria, with a 1:13.5 scale. Measurements of the water free surface were used exclusively to validate the 2D numerical model developed through the Ansys Fluent Computational Fluid-Dynamics (CFD) Software. The numerical model solves the fluid flow field using the RANS equations, in which the air-water interaction governed by this set of partial difference equations is solved with the Finite Volume Method (FVM). In conclusion, results related to the energy efficiency of the caisson were extrapolated from the validated numerical model.

VALIDATION OF A WAVE ENERGY CONVERTER NUMERICAL MODEL THROUGH SMALL SCALE LABORATORY MEASUREMENTS

Lilia CARLO
Primo
;
Sebastian BRUSCA
Secondo
;
Filippo CUCINOTTA;Antonio GALVAGNO;Carla FARACI
Penultimo
;
2020-01-01

Abstract

In the field of Engineering, research has conveniently exploited the fluids for energy production. The possibility to use marine renewable energy is still under development, in particular, among the wave energy converter devices the U-OWC systems are the most promising. The main objective of this work is to validate a numerical model with an experimental campaign that aims to simulate the flow field in front of the breakwater and inside the U-OWC. The tests were carried out to understand the hydrodynamic behaviour of the device in regular wave conditions, inside a flume with rectangular section, equipped by a piston-type wave-maker and a U-OWC device, reproducing the REWEC caisson installed in the Natural Ocean Engineering Laboratory (NOEL) of Reggio Calabria, with a 1:13.5 scale. Measurements of the water free surface were used exclusively to validate the 2D numerical model developed through the Ansys Fluent Computational Fluid-Dynamics (CFD) Software. The numerical model solves the fluid flow field using the RANS equations, in which the air-water interaction governed by this set of partial difference equations is solved with the Finite Volume Method (FVM). In conclusion, results related to the energy efficiency of the caisson were extrapolated from the validated numerical model.
2020
File in questo prodotto:
File Dimensione Formato  
ijege-20_special_issue_carlo.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 838.85 kB
Formato Adobe PDF
838.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3168659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact