In this study, a correlation between cell channel alpha-helices displacement and the mitochondrial transmembrane potential after exposure of 3, 7, 15 and 24 h of neuronal-like cells to a uniform magnetic field at the intensity of 2 mT was shown. Fourier Transform Infrared (FTIR) Spectroscopy and fluorescence techniques were used to analyze the secondary structure of protein content and mitochondrial transmembrane potential, respectively. The main result of this study was represented by a significant inverse relation between the mitochondrial transmembrane potential and the intensity of the Amide I band that can be associated with time exposure. Given that mitochondrial transmembrane potential should be related to the gating state of voltage-dependent anion channel (VDAC) in mitochondrial membrane, this result could have a relevant role in medicine. Indeed, VDAC's irregular behavior can be associated with several varieties of mitochondria-associated pathologies and various forms of cancer and neurodegeneration.

The inverse relation between mitochondrial transmembrane potential and proteins α-helix in neuronal-like cells under static magnetic field and the role of VDAC

Magazù, Salvatore
Secondo
;
Currò, Monica
Penultimo
;
Ientile, Riccardo
Ultimo
2020-01-01

Abstract

In this study, a correlation between cell channel alpha-helices displacement and the mitochondrial transmembrane potential after exposure of 3, 7, 15 and 24 h of neuronal-like cells to a uniform magnetic field at the intensity of 2 mT was shown. Fourier Transform Infrared (FTIR) Spectroscopy and fluorescence techniques were used to analyze the secondary structure of protein content and mitochondrial transmembrane potential, respectively. The main result of this study was represented by a significant inverse relation between the mitochondrial transmembrane potential and the intensity of the Amide I band that can be associated with time exposure. Given that mitochondrial transmembrane potential should be related to the gating state of voltage-dependent anion channel (VDAC) in mitochondrial membrane, this result could have a relevant role in medicine. Indeed, VDAC's irregular behavior can be associated with several varieties of mitochondria-associated pathologies and various forms of cancer and neurodegeneration.
2020
File in questo prodotto:
File Dimensione Formato  
The inverse relation between mitochondrial transmembrane potential and proteins helix in neuronal like cells.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3168816
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact