The amount of Earth observation images available to the public has been the main source of information, helping governments and decision-makers tackling the current world’s most pressing global challenge. However, a number of highly skilled and qualified personnel are still needed to fill the gap and help turn these data into intelligence. In addition, the accuracy of this intelligence relies on the quality of these images in times of temporal, spatial, and spectral resolution. For the purpose of contributing to the global eort aiming at monitoring natural and anthropic processes aecting coastal areas, we proposed a framework for image processing to extract the shoreline and the shallow water depth on GeoEye-1 satellite image and orthomosaic image acquired by an unmanned aerial vehicle (UAV) on the coast of San Vito Lo Capo, with image preprocessing steps involving orthorectification, atmospheric correction, pan sharpening, and binary imaging for water and non-water pixels analysis. Binary imaging analysis step was followed by automatic instantaneous shoreline extraction on a digital image and satellite-derived bathymetry (SDB) mapping on GeoEye-1 water pixels. The extraction of instantaneous shoreline was conducted automatically in ENVI software using a raster to vector (R2V) algorithm, whereas the SDB was computed in ArcGIS software using a log-band ratio method applied on the satellite image and available field data for calibration and vertical referencing. The results obtained from these very high spatial resolution images demonstrated the ability of remote sensing techniques in providing information where techniques using traditional methods present some limitations, especially due to their inability to map hard-to-reach areas and very dynamic near shoreline waters. We noticed that for the period of 5 years, the shoreline of San Vito Lo Capo sand beach migrated about 15 m inland, indicating the high dynamism of this coastal area. The bathymetric information obtained on the GeoEye-1 satellite image provided water depth until 10 m deep with R2 = 0.753. In this paper, we presented cost-eective and practical methods for automatic shoreline extraction and bathymetric mapping of shallow water, which can be adopted for the management and the monitoring of coastal areas.

Analysis of Very High Spatial Resolution Images for Automatic Shoreline Extraction and Satellite-Derived Bathymetry Mapping

Giovanni Randazzo
Primo
;
Giovanni Barreca
Secondo
;
Maria Cascio;Antonio Crupi;Marco Fontana;Francesco Gregorio;Stefania Lanza
Penultimo
;
Anselme Muzirafuti
Ultimo
2020-01-01

Abstract

The amount of Earth observation images available to the public has been the main source of information, helping governments and decision-makers tackling the current world’s most pressing global challenge. However, a number of highly skilled and qualified personnel are still needed to fill the gap and help turn these data into intelligence. In addition, the accuracy of this intelligence relies on the quality of these images in times of temporal, spatial, and spectral resolution. For the purpose of contributing to the global eort aiming at monitoring natural and anthropic processes aecting coastal areas, we proposed a framework for image processing to extract the shoreline and the shallow water depth on GeoEye-1 satellite image and orthomosaic image acquired by an unmanned aerial vehicle (UAV) on the coast of San Vito Lo Capo, with image preprocessing steps involving orthorectification, atmospheric correction, pan sharpening, and binary imaging for water and non-water pixels analysis. Binary imaging analysis step was followed by automatic instantaneous shoreline extraction on a digital image and satellite-derived bathymetry (SDB) mapping on GeoEye-1 water pixels. The extraction of instantaneous shoreline was conducted automatically in ENVI software using a raster to vector (R2V) algorithm, whereas the SDB was computed in ArcGIS software using a log-band ratio method applied on the satellite image and available field data for calibration and vertical referencing. The results obtained from these very high spatial resolution images demonstrated the ability of remote sensing techniques in providing information where techniques using traditional methods present some limitations, especially due to their inability to map hard-to-reach areas and very dynamic near shoreline waters. We noticed that for the period of 5 years, the shoreline of San Vito Lo Capo sand beach migrated about 15 m inland, indicating the high dynamism of this coastal area. The bathymetric information obtained on the GeoEye-1 satellite image provided water depth until 10 m deep with R2 = 0.753. In this paper, we presented cost-eective and practical methods for automatic shoreline extraction and bathymetric mapping of shallow water, which can be adopted for the management and the monitoring of coastal areas.
2020
File in questo prodotto:
File Dimensione Formato  
17_2020_Randazzo et al._Analysis of Very High Spatial Resolution Images for_Geoscience.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.95 MB
Formato Adobe PDF
4.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3169266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact