We propose a new approach for the extraction of the equivalent parameters of quartz tuning forks used as sensors by means of noise measurements. Noise is used as the test signal for the determination, by means of spectral analysis, of the frequency response of a circuit including the quartz tuning fork whose parameters need to be determined. A new approach for the analysis of strongly peaked noise spectra was developed in order to allow the correct measurement of the strongly peaked noise spectrum at the output of the system, which is the result of the high-quality factor of any quartz tuning fork-based sensor. With the approach we propose, the best compromise in terms of accuracy and measurement time can be obtained in a single measurement run. The performances of the approach we propose are discussed in comparison with those that can be obtained from a swept spectrum approach in the same operating conditions.
Accurate QTF sensing approach by means of narrow band spectral estimation
Scandurra G.
Primo
;Giusi G.Secondo
;Ciofi C.Ultimo
2020-01-01
Abstract
We propose a new approach for the extraction of the equivalent parameters of quartz tuning forks used as sensors by means of noise measurements. Noise is used as the test signal for the determination, by means of spectral analysis, of the frequency response of a circuit including the quartz tuning fork whose parameters need to be determined. A new approach for the analysis of strongly peaked noise spectra was developed in order to allow the correct measurement of the strongly peaked noise spectrum at the output of the system, which is the result of the high-quality factor of any quartz tuning fork-based sensor. With the approach we propose, the best compromise in terms of accuracy and measurement time can be obtained in a single measurement run. The performances of the approach we propose are discussed in comparison with those that can be obtained from a swept spectrum approach in the same operating conditions.File | Dimensione | Formato | |
---|---|---|---|
published.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
891.73 kB
Formato
Adobe PDF
|
891.73 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.