It has been shown elsewhere that two spatially separated atoms can jointly absorb one photon, whose frequency is equal to the sum of the transition frequencies of the two atoms. We describe this process in the presence of an ensemble of many two-level atoms and show that it can be used to generate spin squeezing and entanglement. This resonant collective process allows us to create a sizable squeezing already at the single-photon limit. It represents a way to generate many-body spin-spin interactions, yielding a two-axis twisting-like interaction among the spins, which is very efficient for the generation of spin squeezing. We perform explicit calculations for ensembles of magnetic molecules coupled to a superconducting coplanar cavities. This system represents an attractive on-chip architecture for the realization of improved sensing.

Spin squeezing by one-photon-two-atom excitation processes in atomic ensembles

Savasta S.
Penultimo
;
2020-01-01

Abstract

It has been shown elsewhere that two spatially separated atoms can jointly absorb one photon, whose frequency is equal to the sum of the transition frequencies of the two atoms. We describe this process in the presence of an ensemble of many two-level atoms and show that it can be used to generate spin squeezing and entanglement. This resonant collective process allows us to create a sizable squeezing already at the single-photon limit. It represents a way to generate many-body spin-spin interactions, yielding a two-axis twisting-like interaction among the spins, which is very efficient for the generation of spin squeezing. We perform explicit calculations for ensembles of magnetic molecules coupled to a superconducting coplanar cavities. This system represents an attractive on-chip architecture for the realization of improved sensing.
2020
File in questo prodotto:
File Dimensione Formato  
Macrì PRA 2020.pdf

solo utenti autorizzati

Descrizione: pdf 13 pagine
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3170256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact