Virtually every cellular process is affected by diet and this represents the foundation of dietary management to a variety of small animal disorders. Special attention is currently being paid to a family of naturally occurring lipid amides acting through the so-called autacoid local injury antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide (PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then, PEA has been isolated from a variety of plant and animal food sources and its proresolving function in the mammalian body has been increasingly investigated. The discovery of the close interconnection between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic functions fully breaks with the classical pharmacology view of "one drug, one target, one disease", opening a new era in the management of animals' health, i.e., an according-to-nature biomodulation of body responses to different stimuli and injury. The present review focuses on the direct and indirect endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from experimental and clinical studies on ALIAmides in animal health and wellbeing.

Palmitoylethanolamide and Related ALIAmides: Prohomeostatic Lipid Compounds for Animal Health and Wellbeing

Gugliandolo, Enrico;Peritore, Alessio Filippo;Cuzzocrea, Salvatore;Crupi, Rosalia
2020-01-01

Abstract

Virtually every cellular process is affected by diet and this represents the foundation of dietary management to a variety of small animal disorders. Special attention is currently being paid to a family of naturally occurring lipid amides acting through the so-called autacoid local injury antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide (PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then, PEA has been isolated from a variety of plant and animal food sources and its proresolving function in the mammalian body has been increasingly investigated. The discovery of the close interconnection between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic functions fully breaks with the classical pharmacology view of "one drug, one target, one disease", opening a new era in the management of animals' health, i.e., an according-to-nature biomodulation of body responses to different stimuli and injury. The present review focuses on the direct and indirect endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from experimental and clinical studies on ALIAmides in animal health and wellbeing.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3171437
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact