The major histocompatibility complex I (MHC-1) presents antigenic peptides to tumor-specific CD8-T cells. The regulation of MHC-I by kinases is largely unstudied, even though many patients with cancer are receiving therapeutic kinase inhibitors. Regulators of cell-surface HLA amounts were discovered using a pooled human kinome shRNA interference-based approach. Hits scoring highly were subsequently validated by additional RNAi and pharmacologic inhibitors. MAP2K1 (MEK), EGFR, and RET were validated as negative regulators of MHC-I expression and antigen presentation machinery in multiple cancer types, acting through an ERK output-dependent mechanism; the pathways responsible for increased MHC-I upon kinase inhibition were mapped. Activated MAPK signaling in mouse tumors in vivo suppressed components of MHC-I and the antigen presentation machinery. Pharmacologic inhibition of MAPK signaling also led to improved peptide/MHC target recognition and killing by T cells and TCR-mimic antibodies. Druggable kinases may thus serve as immediately applicable targets for modulating immunotherapy for many diseases.

Kinase regulation of human MHC class i molecule expression on cancer cells

Mondello P.;
2016-01-01

Abstract

The major histocompatibility complex I (MHC-1) presents antigenic peptides to tumor-specific CD8-T cells. The regulation of MHC-I by kinases is largely unstudied, even though many patients with cancer are receiving therapeutic kinase inhibitors. Regulators of cell-surface HLA amounts were discovered using a pooled human kinome shRNA interference-based approach. Hits scoring highly were subsequently validated by additional RNAi and pharmacologic inhibitors. MAP2K1 (MEK), EGFR, and RET were validated as negative regulators of MHC-I expression and antigen presentation machinery in multiple cancer types, acting through an ERK output-dependent mechanism; the pathways responsible for increased MHC-I upon kinase inhibition were mapped. Activated MAPK signaling in mouse tumors in vivo suppressed components of MHC-I and the antigen presentation machinery. Pharmacologic inhibition of MAPK signaling also led to improved peptide/MHC target recognition and killing by T cells and TCR-mimic antibodies. Druggable kinases may thus serve as immediately applicable targets for modulating immunotherapy for many diseases.
2016
File in questo prodotto:
File Dimensione Formato  
Brea E.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3171699
Citazioni
  • ???jsp.display-item.citation.pmc??? 77
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 131
social impact