In this study, a conical-cylindrical spouted bed dryer with Teflon  beads as spouting material was used for producing powdered rosemary (Rosmarinus o cinalis L.) extract. The influence of the inlet drying gas temperature (Tgi) and the percentage ratio between the feed rate of concentrated liquid extract by the maximum evaporation capacity of the spouted bed (Ws/Wmax) on selected physicochemical properties of the finished products were investigated. Antioxidant properties of the concentrated liquid extract and dried extracts were also evaluated by the 2.2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH•) and lipid peroxidation induced by Fe2+/citrate (LPO) methods; and compared with the values obtained for a lyophilized extract (used as a control). Colloidal silicon dioxide (Tixosil  333) and maltodextrin (DE 14) at a 2:1 ratio was added to the concentrated extract before drying (4.4% w/w) to improve the drying performance. The drying variables Ws/Wmax and Tgi have statistically significant influence on total polyphenols and total flavonoid contents of the dried powders. The concentrated extract (on dry basis—being absolute solid content) showed superior antioxidant activity (AA) compared to both the spouted bed dried and the lyophilized extracts; exhibiting IC50 values of 0.96   0.02, 2.16   0.04 and 3.79   0.05 μg mL−1 (DPPH• method) and 0.22   0.01, 1.31  0.01 and 2.54   0.02 μg mL−1 (LPO method), respectively. These results of AA are comparable to values obtained for quercetin, a flavonoid compound often used as a reference standard due to its potent antioxidant activity; with IC50 of 1.17 μg mL−1 (DPPH•) and 0.22 μg mL−1 (LPO). However, the dried rosemary extracts are about 13.5 times more concentrated than the initial concentrated extract (dry weight), with a concentration of total flavonoids and polyphenols compounds ranging from 4.3 to 12.3 and from 1.2 to 4.7 times higher than the concentrated extract values (wet basis). The AA per dry product mass was thus significantly higher than the values measured for concentrated extractive solution, irrespective of some losses of AA apparently due to the drying process.

Spouted bed dried rosmarinus officinalis extract: A novel approach for physicochemical properties and antioxidant activity

Cicero N.
Penultimo
Membro del Collaboration Group
;
2020-01-01

Abstract

In this study, a conical-cylindrical spouted bed dryer with Teflon  beads as spouting material was used for producing powdered rosemary (Rosmarinus o cinalis L.) extract. The influence of the inlet drying gas temperature (Tgi) and the percentage ratio between the feed rate of concentrated liquid extract by the maximum evaporation capacity of the spouted bed (Ws/Wmax) on selected physicochemical properties of the finished products were investigated. Antioxidant properties of the concentrated liquid extract and dried extracts were also evaluated by the 2.2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH•) and lipid peroxidation induced by Fe2+/citrate (LPO) methods; and compared with the values obtained for a lyophilized extract (used as a control). Colloidal silicon dioxide (Tixosil  333) and maltodextrin (DE 14) at a 2:1 ratio was added to the concentrated extract before drying (4.4% w/w) to improve the drying performance. The drying variables Ws/Wmax and Tgi have statistically significant influence on total polyphenols and total flavonoid contents of the dried powders. The concentrated extract (on dry basis—being absolute solid content) showed superior antioxidant activity (AA) compared to both the spouted bed dried and the lyophilized extracts; exhibiting IC50 values of 0.96   0.02, 2.16   0.04 and 3.79   0.05 μg mL−1 (DPPH• method) and 0.22   0.01, 1.31  0.01 and 2.54   0.02 μg mL−1 (LPO method), respectively. These results of AA are comparable to values obtained for quercetin, a flavonoid compound often used as a reference standard due to its potent antioxidant activity; with IC50 of 1.17 μg mL−1 (DPPH•) and 0.22 μg mL−1 (LPO). However, the dried rosemary extracts are about 13.5 times more concentrated than the initial concentrated extract (dry weight), with a concentration of total flavonoids and polyphenols compounds ranging from 4.3 to 12.3 and from 1.2 to 4.7 times higher than the concentrated extract values (wet basis). The AA per dry product mass was thus significantly higher than the values measured for concentrated extractive solution, irrespective of some losses of AA apparently due to the drying process.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3175042
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact