Storage and analysis of video surveillance data is a significant challenge, requiring video interpretation and event detection in the relevant context. To perform this task, the low-level features including shape, texture, and color information are extracted and represented in symbolic forms. In this work, a methodology is proposed, which extracts the salient features and properties using machine learning techniques and represent this information as Linked Data using a domain ontology that is explicitly tailored for detection of certain activities. An ontology is also developed to include concepts and properties which may be applicable in the domain of surveillance and its applications. The proposed approach is validated with actual implementation and is thus evaluated by recognizing suspicious activity in an open parking space. The suspicious activity detection is formalized through inference rules and SPARQL queries. Eventually, Semantic Web Technology has proven to be a remarkable toolchain to interpret videos, thus opening novel possibilities for video scene representation, and detection of complex events, without any human involvement. The proposed novel approach can thus have representation of frame-level information of a video in structured representation and perform event detection while reducing storage and enhancing semantically-aided retrieval of video data.

Video representation and suspicious event detection using semantic technologies

Merlino, Giovanni
Secondo
;
Bruneo, Dario;Puliafito, Antonio;
2021-01-01

Abstract

Storage and analysis of video surveillance data is a significant challenge, requiring video interpretation and event detection in the relevant context. To perform this task, the low-level features including shape, texture, and color information are extracted and represented in symbolic forms. In this work, a methodology is proposed, which extracts the salient features and properties using machine learning techniques and represent this information as Linked Data using a domain ontology that is explicitly tailored for detection of certain activities. An ontology is also developed to include concepts and properties which may be applicable in the domain of surveillance and its applications. The proposed approach is validated with actual implementation and is thus evaluated by recognizing suspicious activity in an open parking space. The suspicious activity detection is formalized through inference rules and SPARQL queries. Eventually, Semantic Web Technology has proven to be a remarkable toolchain to interpret videos, thus opening novel possibilities for video scene representation, and detection of complex events, without any human involvement. The proposed novel approach can thus have representation of frame-level information of a video in structured representation and perform event detection while reducing storage and enhancing semantically-aided retrieval of video data.
2021
File in questo prodotto:
File Dimensione Formato  
sw200393.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3177645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact