Piezoelectric energy harvesters (PEHs) are a reduced, but fundamental, source of power for embedded, remote, and no-grid connected electrical systems. Some key limits, such as low power density, poor conversion efficiency, high internal impedance, and AC output, can be partially overcome by matching their internal electrical impedance to that of the applied resistance load. However, the applied resistance load can vary significantly in time, since it depends on the vibration frequency and the working temperature. Hence, a real-time tracking of the applied impedance load should be done to always harvest the maximum energy from the PEH. This paper faces the above problem by presenting an active control able to track and follow in time the optimal working point of a PEH. It exploits a non-conventional AC–DC converter, which integrates a single-stage DC–DC Zeta converter and a full-bridge active rectifier, controlled by a dedicated algorithm based on pulse-width modulation (PWM) with maximum power point tracking (MPPT). A prototype of the proposed converter, based on discrete components, was created and experimentally tested by applying a sudden variation of the resistance load, aimed to emulate a change in the excitation frequency from 30 to 70 Hz and a change in the operating temperature from 25 to 50 °C. Results showed the effectiveness of the proposed approach, which allowed to match the optimal load after 0.38 s for a ΔR of 47 kΩ and after 0.15 s for a ΔR of 18 kΩ

A New Approach for Impedance Tracking of Piezoelectric Vibration Energy Harvesters Based on a Zeta Converter

Quattrocchi, Antonino
Primo
;
Montanini, Roberto
Secondo
;
De Caro, Salvatore;Panarello, Saverio;Scimone, Tommaso;Foti, Salvatore
Penultimo
;
Testa, Antonio
Ultimo
2020-01-01

Abstract

Piezoelectric energy harvesters (PEHs) are a reduced, but fundamental, source of power for embedded, remote, and no-grid connected electrical systems. Some key limits, such as low power density, poor conversion efficiency, high internal impedance, and AC output, can be partially overcome by matching their internal electrical impedance to that of the applied resistance load. However, the applied resistance load can vary significantly in time, since it depends on the vibration frequency and the working temperature. Hence, a real-time tracking of the applied impedance load should be done to always harvest the maximum energy from the PEH. This paper faces the above problem by presenting an active control able to track and follow in time the optimal working point of a PEH. It exploits a non-conventional AC–DC converter, which integrates a single-stage DC–DC Zeta converter and a full-bridge active rectifier, controlled by a dedicated algorithm based on pulse-width modulation (PWM) with maximum power point tracking (MPPT). A prototype of the proposed converter, based on discrete components, was created and experimentally tested by applying a sudden variation of the resistance load, aimed to emulate a change in the excitation frequency from 30 to 70 Hz and a change in the operating temperature from 25 to 50 °C. Results showed the effectiveness of the proposed approach, which allowed to match the optimal load after 0.38 s for a ΔR of 47 kΩ and after 0.15 s for a ΔR of 18 kΩ
2020
File in questo prodotto:
File Dimensione Formato  
sensors-20-05862.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3178152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact