The cornea's intense innervation is responsible for corneal trophism and ocular surface hemostasis maintenance. Corneal diabetic neuropathy affects subbasal nerve plexus, with progressive alteration of nerves' morphology and density. The quantitative analysis of nerve fibers can be performed with in vivo corneal confocal microscopy considering the main parameters such as corneal nerve fibers length, corneal nerve fibers density, corneal nerve branching density, tortuosity coefficient, and beadings frequency. As the nerve examination permits the detection of early changes occurring in diabetes, the in vivo corneal confocal microscopy becomes, over time, an important tool for diabetic polyneuropathy assessment and follow-up. In this review, we summarize the actual evidence about corneal nerve changes in diabetes and the relationship between the grade of alterations and the duration and severity of the disease. We aim at understanding how diabetes impacts corneal nerves and how it correlates with sensorimotor peripheral polyneuropathy and retinal complications. We also attempt to analyze the safety of the most common surgical procedures such as cataract and refractive surgery in diabetic patients and to highlight the specific risk factors. We believe that information about the corneal nerve fibers' condition obtained from the in vivo subbasal nerve plexus investigation may be crucial in monitoring peripheral small fiber polyneuropathy and that it will help with decision-making in ophthalmic surgery in diabetic patients.
Corneal nerves in diabetes—The role of the in vivo corneal confocal microscopy of the subbasal nerve plexus in the assessment of peripheral small fiber neuropathy
Roszkowska A. M.
Primo
;Licitra C.;Colonna M. R.;Aragona P.Ultimo
2021-01-01
Abstract
The cornea's intense innervation is responsible for corneal trophism and ocular surface hemostasis maintenance. Corneal diabetic neuropathy affects subbasal nerve plexus, with progressive alteration of nerves' morphology and density. The quantitative analysis of nerve fibers can be performed with in vivo corneal confocal microscopy considering the main parameters such as corneal nerve fibers length, corneal nerve fibers density, corneal nerve branching density, tortuosity coefficient, and beadings frequency. As the nerve examination permits the detection of early changes occurring in diabetes, the in vivo corneal confocal microscopy becomes, over time, an important tool for diabetic polyneuropathy assessment and follow-up. In this review, we summarize the actual evidence about corneal nerve changes in diabetes and the relationship between the grade of alterations and the duration and severity of the disease. We aim at understanding how diabetes impacts corneal nerves and how it correlates with sensorimotor peripheral polyneuropathy and retinal complications. We also attempt to analyze the safety of the most common surgical procedures such as cataract and refractive surgery in diabetic patients and to highlight the specific risk factors. We believe that information about the corneal nerve fibers' condition obtained from the in vivo subbasal nerve plexus investigation may be crucial in monitoring peripheral small fiber polyneuropathy and that it will help with decision-making in ophthalmic surgery in diabetic patients.File | Dimensione | Formato | |
---|---|---|---|
corneal innervation.pdf
solo utenti autorizzati
Descrizione: Paper in extenso. Article in press
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
3182865.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
936.48 kB
Formato
Adobe PDF
|
936.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.