Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. In this work, we give an overview on the fundamentals of pulsed laser synthesis of nanocolloids and new information about its scalability towards selected applications. Biomedicine, catalysis and sensing are the application areas mainly discussed in this review, highlighting advantages of laser-synthesized nanoparticles for these types of applications and, once partially resolved, the limitations to the technique for large-scale applications.

Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications

Fazio E.
Primo
;
Dell'aglio M.;Gallo G.;Santoro M.;Neri F.
Ultimo
2020-01-01

Abstract

Laser synthesis emerges as a suitable technique to produce ligand-free nanoparticles, alloys and functionalized nanomaterials for catalysis, imaging, biomedicine, energy and environmental applications. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment and conjugate a large variety of nanostructures in a scalable and clean way. In this work, we give an overview on the fundamentals of pulsed laser synthesis of nanocolloids and new information about its scalability towards selected applications. Biomedicine, catalysis and sensing are the application areas mainly discussed in this review, highlighting advantages of laser-synthesized nanoparticles for these types of applications and, once partially resolved, the limitations to the technique for large-scale applications.
2020
File in questo prodotto:
File Dimensione Formato  
2020_nanomaterials-10-02317_pp50.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 8.42 MB
Formato Adobe PDF
8.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3182922
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 179
  • ???jsp.display-item.citation.isi??? 163
social impact