Materials hosting magnetic skyrmions at room temperature could enable compact and energetically-efficient storage such as racetrack memories, where information is coded by the presence/absence of skyrmions forming a moving chain through the device. The skyrmion Hall effect leading to their annihilation at the racetrack edges can be suppressed, for example, by antiferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances remains challenging. As a solution, a chain of bits could also be encoded by two different solitons, such as a skyrmion and a chiral bobber, with the limitation that it has solely been realized in B20-type materials at low temperatures. Here, we demonstrate that a hybrid ferro/ferri/ferromagnetic multilayer system can host two distinct skyrmion phases at room temperature, namely tubular and partial skyrmions. Furthermore, the tubular skyrmion can be converted into a partial skyrmion. Such systems may serve as a platform for designing memory applications using distinct skyrmion types.

Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers

Tomasello R.;Giordano A.;Finocchio G.
Penultimo
;
2020-01-01

Abstract

Materials hosting magnetic skyrmions at room temperature could enable compact and energetically-efficient storage such as racetrack memories, where information is coded by the presence/absence of skyrmions forming a moving chain through the device. The skyrmion Hall effect leading to their annihilation at the racetrack edges can be suppressed, for example, by antiferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances remains challenging. As a solution, a chain of bits could also be encoded by two different solitons, such as a skyrmion and a chiral bobber, with the limitation that it has solely been realized in B20-type materials at low temperatures. Here, we demonstrate that a hybrid ferro/ferri/ferromagnetic multilayer system can host two distinct skyrmion phases at room temperature, namely tubular and partial skyrmions. Furthermore, the tubular skyrmion can be converted into a partial skyrmion. Such systems may serve as a platform for designing memory applications using distinct skyrmion types.
2020
File in questo prodotto:
File Dimensione Formato  
s41467-020-20025-2.pdf

accesso aperto

Descrizione: Articolo publicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3184432
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact