A new theoretical approach to resolve functionally graded beams is the subject of the present work. In particular, it is shown how the definition of some particular generalized quantities allows to simplify the form of the differential equations governing the response of both Euler–Bernoulli and Timoshenko functionally graded beams. Indeed, they take the same form as the differential equations governing the axial and the bending equilibrium in the Euler–Bernoulli theory. This result is obtained in both the cases of material variation in transversal and axial direction.

A homogenized theory for functionally graded Euler–Bernoulli and Timoshenko beams

Falsone G.
Primo
;
La Valle G.
Ultimo
2019-01-01

Abstract

A new theoretical approach to resolve functionally graded beams is the subject of the present work. In particular, it is shown how the definition of some particular generalized quantities allows to simplify the form of the differential equations governing the response of both Euler–Bernoulli and Timoshenko functionally graded beams. Indeed, they take the same form as the differential equations governing the axial and the bending equilibrium in the Euler–Bernoulli theory. This result is obtained in both the cases of material variation in transversal and axial direction.
2019
File in questo prodotto:
File Dimensione Formato  
Falsone-LaValle2019_Article_AHomogenizedTheoryForFunctiona.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 536.17 kB
Formato Adobe PDF
536.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3185316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact