Background: Genotyping is crucial for the identification of genetic markers underlying the development of neoplastic diseases and for determining individual variations in response to specific drugs. Technologies which can accurately identify genetic polymorphisms will dramatically affect routine diagnostic processes and future therapeutic developments in personalized medicine. However, such methods need to fulfill the principles of analytical validation to determine their suitability to assess nucleotide polymorphisms in target genes. Approach: This article reviews recent developments in homogeneous technologies for the genotyping of single nucleotide polymorphisms. Here, homogeneous methods essentially refer to "single-tube" assays performed in a liquid phase. For the appropriate choice of any method, several criteria must be considered: 1) detection of known genetic variations; 2) analytical performance including specificity, sensitivity and robustness of the method; 3) availability of large platforms and required equipment; 4) suitability of platforms and tests for routine diagnostics; 5) suitability for high throughput implementation. Content: This review is intended to provide the reader with an understanding of these various technologies for pharmacogenomic testing in the routine clinical laboratory. A brief overview is provided on the available technologies for the detection of known mutations, a specific description of the homogeneous platforms currently employed in genotyping analysis, and considerations regarding the proper assessment of the analytical performance of these methods. Based on the criteria proposed here, potential users may evaluate advantages and limitations of the various analytical platforms and identify the most appropriate platform according to their specific setting and diagnostic needs. © 2010 by Walter de Gruyter Berlin New York.

Decision criteria for rational selection of homogeneous genotyping platforms for pharmacogenomics testing in clinical diagnostics

Berretta M.;
2010-01-01

Abstract

Background: Genotyping is crucial for the identification of genetic markers underlying the development of neoplastic diseases and for determining individual variations in response to specific drugs. Technologies which can accurately identify genetic polymorphisms will dramatically affect routine diagnostic processes and future therapeutic developments in personalized medicine. However, such methods need to fulfill the principles of analytical validation to determine their suitability to assess nucleotide polymorphisms in target genes. Approach: This article reviews recent developments in homogeneous technologies for the genotyping of single nucleotide polymorphisms. Here, homogeneous methods essentially refer to "single-tube" assays performed in a liquid phase. For the appropriate choice of any method, several criteria must be considered: 1) detection of known genetic variations; 2) analytical performance including specificity, sensitivity and robustness of the method; 3) availability of large platforms and required equipment; 4) suitability of platforms and tests for routine diagnostics; 5) suitability for high throughput implementation. Content: This review is intended to provide the reader with an understanding of these various technologies for pharmacogenomic testing in the routine clinical laboratory. A brief overview is provided on the available technologies for the detection of known mutations, a specific description of the homogeneous platforms currently employed in genotyping analysis, and considerations regarding the proper assessment of the analytical performance of these methods. Based on the criteria proposed here, potential users may evaluate advantages and limitations of the various analytical platforms and identify the most appropriate platform according to their specific setting and diagnostic needs. © 2010 by Walter de Gruyter Berlin New York.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3190674
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 33
social impact