The spatial extent of hypoperfusion or viability is important in the treatment of patients with coronary artery disease. We hypothesized that computerized pixel intensity threshold analysis (PITA) could be used for the automated analysis of perfusion defect size during myocardial contrast echocardiography (MCE). For calibration studies, MCE was performed in 6 dogs undergoing ischemia and reperfusion. Infarct size was determined by PITA, which automatically calculates the percentage of pixels within the myocardium that fail to exceed a predetermined threshold of maximum contrast enhancement. A threshold of 10% of maximum yielded infarct sizes that most closely correlated with those determined by histologic staining. For clinical validation, MCE was performed in 30 patients with acute myocardial infarction before primary percutaneous coronary intervention (PCI) for measurement of risk area; and within 5 days and at 4 weeks after PCI to determine infarct size. The defect size by PITA with a 10% threshold value closely correlated with those measured by expert reader planimetry on background-subtracted color-coded image sets (r = 0.95, P < .001). We conclude that automated analysis of perfusion defect size on MCE is possible by PITA. This technique may be useful for rapid and objective analysis of the extent of ischemia and viability, and for clinical experimentation where accurate and sequential analysis of perfusion defect size is imperative. © 2006 American Society of Echocardiography.

Automated Quantification of the Spatial Extent of Perfusion Defects and Viability on Myocardial Contrast Echocardiography

Micari A.;
2006-01-01

Abstract

The spatial extent of hypoperfusion or viability is important in the treatment of patients with coronary artery disease. We hypothesized that computerized pixel intensity threshold analysis (PITA) could be used for the automated analysis of perfusion defect size during myocardial contrast echocardiography (MCE). For calibration studies, MCE was performed in 6 dogs undergoing ischemia and reperfusion. Infarct size was determined by PITA, which automatically calculates the percentage of pixels within the myocardium that fail to exceed a predetermined threshold of maximum contrast enhancement. A threshold of 10% of maximum yielded infarct sizes that most closely correlated with those determined by histologic staining. For clinical validation, MCE was performed in 30 patients with acute myocardial infarction before primary percutaneous coronary intervention (PCI) for measurement of risk area; and within 5 days and at 4 weeks after PCI to determine infarct size. The defect size by PITA with a 10% threshold value closely correlated with those measured by expert reader planimetry on background-subtracted color-coded image sets (r = 0.95, P < .001). We conclude that automated analysis of perfusion defect size on MCE is possible by PITA. This technique may be useful for rapid and objective analysis of the extent of ischemia and viability, and for clinical experimentation where accurate and sequential analysis of perfusion defect size is imperative. © 2006 American Society of Echocardiography.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3194803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact