Transition metal complexes with dppz-type ligands (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) are extensively studied and attract a considerable amount of attention, becoming, from the very beginning and increasingly over time, a powerful tool for investigating the structure of the DNA helix. In particular, [Ru(bpy)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ and their derivatives were extensively investigated as DNA light-switches. The purpose of this mini-review, which is not and could not be exhaustive, was to first introduce DNA and its importance at a biological level and research in the field of small molecules that are capable of interacting with it, in all its forms. A brief overview is given of the results obtained on the Ru-dppz complexes that bind to DNA. The mechanism of the light-switch active in this type of species is also briefly introduced along with its effects on structural modifications on both the dppz ligand and the ancillary ligands. Finally, a brief mention is made of biological applications and the developments obtained due to new spectroscopic techniques, both for understanding the mechanism of action and for cellular imaging applications.
Ru(Ii)-dppz derivatives and their interactions with dna: Thirty years and counting
Di Pietro M. L.;La Ganga G.;Nastasi F.;Puntoriero F.
2021-01-01
Abstract
Transition metal complexes with dppz-type ligands (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) are extensively studied and attract a considerable amount of attention, becoming, from the very beginning and increasingly over time, a powerful tool for investigating the structure of the DNA helix. In particular, [Ru(bpy)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ and their derivatives were extensively investigated as DNA light-switches. The purpose of this mini-review, which is not and could not be exhaustive, was to first introduce DNA and its importance at a biological level and research in the field of small molecules that are capable of interacting with it, in all its forms. A brief overview is given of the results obtained on the Ru-dppz complexes that bind to DNA. The mechanism of the light-switch active in this type of species is also briefly introduced along with its effects on structural modifications on both the dppz ligand and the ancillary ligands. Finally, a brief mention is made of biological applications and the developments obtained due to new spectroscopic techniques, both for understanding the mechanism of action and for cellular imaging applications.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.