Fragile X Syndrome is a genetic form of intellectual disability associated with autism, epilepsy and mood disorders. Electrophysiology studies in Fmr1 knockout (KO) mice, a murine model of Fragile X Syndrome, have demonstrated alterations of synaptic plasticity, with exaggerated long term depression induced by activation of metabotropic glutamate receptors (mGluR-LTD) in Fmr1 KO hippocampus. We have previously demonstrated that activation of serotonin 5-HT7 receptors reverses mGluR-LTD in the hippocampus of wild-type and Fmr1 KO mice, thus correcting a synaptic dysfunction typically observed in this disease model. Here we show that pharmacological inhibition of cyclin-dependent kinase 5 (Cdk5, a signaling molecule recently shown to be a modulator of brain synaptic plasticity) enhanced mGluR-LTD in wild-type hippocampal neurons, which became comparable to exaggerated mGluR-LTD observed in Fmr1 KO neurons. Furthermore, Cdk5 inhibition prevented 5-HT7 receptor-mediated reversal of mGluR-LTD both in wild-type and in Fmr1 KO neurons. Our results show that Cdk5 modulates hippocampal synaptic plasticity. 5-HT7 receptors require Cdk5 to modulate synaptic plasticity in wild-type and rescue abnormal plasticity in Fmr1 KO neurons, pointing out Cdk5 as a possible novel target in Fragile X Syndrome.

Serotonin 5-HT7 receptors require Cyclin-Dependent Kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome

Costa, L
Primo
;
2021-01-01

Abstract

Fragile X Syndrome is a genetic form of intellectual disability associated with autism, epilepsy and mood disorders. Electrophysiology studies in Fmr1 knockout (KO) mice, a murine model of Fragile X Syndrome, have demonstrated alterations of synaptic plasticity, with exaggerated long term depression induced by activation of metabotropic glutamate receptors (mGluR-LTD) in Fmr1 KO hippocampus. We have previously demonstrated that activation of serotonin 5-HT7 receptors reverses mGluR-LTD in the hippocampus of wild-type and Fmr1 KO mice, thus correcting a synaptic dysfunction typically observed in this disease model. Here we show that pharmacological inhibition of cyclin-dependent kinase 5 (Cdk5, a signaling molecule recently shown to be a modulator of brain synaptic plasticity) enhanced mGluR-LTD in wild-type hippocampal neurons, which became comparable to exaggerated mGluR-LTD observed in Fmr1 KO neurons. Furthermore, Cdk5 inhibition prevented 5-HT7 receptor-mediated reversal of mGluR-LTD both in wild-type and in Fmr1 KO neurons. Our results show that Cdk5 modulates hippocampal synaptic plasticity. 5-HT7 receptors require Cdk5 to modulate synaptic plasticity in wild-type and rescue abnormal plasticity in Fmr1 KO neurons, pointing out Cdk5 as a possible novel target in Fragile X Syndrome.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3203905
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact