A unconditionally stable step-by-step procedure is proposed to evaluate the mean square response of a linear system with several degrees of freedom, subjected to earthquake ground motion. A non-stationary modulated random process, obtained as the product of a deterministic time envelope function and a stationary noise, is used to simulate earthquake acceleration. The accuracy of the procedure and its extension to nonlinear systems are discussed. Numerical examples are given for a hysteretic system, a duffing oscillator and a linear system with several degrees of freedom. © 1984.

Stochastic seismic analysis of multidegree of freedom systems

Muscolino G.
1984-01-01

Abstract

A unconditionally stable step-by-step procedure is proposed to evaluate the mean square response of a linear system with several degrees of freedom, subjected to earthquake ground motion. A non-stationary modulated random process, obtained as the product of a deterministic time envelope function and a stationary noise, is used to simulate earthquake acceleration. The accuracy of the procedure and its extension to nonlinear systems are discussed. Numerical examples are given for a hysteretic system, a duffing oscillator and a linear system with several degrees of freedom. © 1984.
1984
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3205422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact