Using theoretical arguments, we present two novel spectrum models of the streamwise velocity component with robust correlation structures, which account for and decouple the fractal dimension and Hurst effect. The formulations that use isotropic concepts are adapted from the modern probability theory using the so-called generalized Cauchy and Dagum models, which belong to wide-sense-stationary random fields. A complementary inspection of these two models with field data from a met-tower-mounted sonic anemometer located within the atmospheric surface layer reveals good agreement and better performance than other conventionally used isotropic-based models of streamwise velocity spectra. The fractal dimension, D, of both models is consistent with the well-known Kolmogorov -5/3 power law in the inertial sub-range. For completeness, the study includes a derivation of the explicit forms of the energy spectral densities of the Cauchy and Dagum covariances.

On streamwise velocity spectra models with fractal and long-memory effects

Laudani R.;
2021-01-01

Abstract

Using theoretical arguments, we present two novel spectrum models of the streamwise velocity component with robust correlation structures, which account for and decouple the fractal dimension and Hurst effect. The formulations that use isotropic concepts are adapted from the modern probability theory using the so-called generalized Cauchy and Dagum models, which belong to wide-sense-stationary random fields. A complementary inspection of these two models with field data from a met-tower-mounted sonic anemometer located within the atmospheric surface layer reveals good agreement and better performance than other conventionally used isotropic-based models of streamwise velocity spectra. The fractal dimension, D, of both models is consistent with the well-known Kolmogorov -5/3 power law in the inertial sub-range. For completeness, the study includes a derivation of the explicit forms of the energy spectral densities of the Cauchy and Dagum covariances.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3205637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact