Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811–5848 (2003)].
Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity
M. C. Nucci
2021-01-01
Abstract
Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub–NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811–5848 (2003)].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
3205872.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.53 MB
Formato
Adobe PDF
|
4.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.