It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.

The nonlinear pendulum always oscillates

Nucci, Maria Clara
2017-01-01

Abstract

It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.
2017
File in questo prodotto:
File Dimensione Formato  
3206690.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 665.55 kB
Formato Adobe PDF
665.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3206690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact