It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.
The nonlinear pendulum always oscillates
Nucci, Maria Clara
2017-01-01
Abstract
It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
3206690.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
665.55 kB
Formato
Adobe PDF
|
665.55 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.