We introduce a new type of recursion operator suitable to generate a class of nonlocal symmetries for those second-order evolution equations in 1+1 dimension which allow the complete integration of their time-independent versions. We show that this class of evolution equations is C-integrable (linearizable by a point transformation). We also discuss some applications.
ON NONLOCAL SYMMETRIES GENERATED BY RECURSION OPERATORS: SECOND-ORDER EVOLUTION EQUATIONS
NUCCI, Maria Clara
2017-01-01
Abstract
We introduce a new type of recursion operator suitable to generate a class of nonlocal symmetries for those second-order evolution equations in 1+1 dimension which allow the complete integration of their time-independent versions. We show that this class of evolution equations is C-integrable (linearizable by a point transformation). We also discuss some applications.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
3206692.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
287.44 kB
Formato
Adobe PDF
|
287.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.