Let Omega be a bounded smooth domain in R-N. We study the existence of positive solutions to the Dirichlet problem-Delta u = (1 - u)u(delta-1) - lambda u(r-1), in Omega,u=0, on partial derivative Omega,where 1 < r < s <= 2, and lambda > 0. In particular, we answer to some questions posed in the recent paper [3] where this problem was considered.

POSITIVE SOLUTIONS TO A DIRICHLET PROBLEM WITH NON-LIPSCHITZ NONLINEARITIES

Anello, G
2021-01-01

Abstract

Let Omega be a bounded smooth domain in R-N. We study the existence of positive solutions to the Dirichlet problem-Delta u = (1 - u)u(delta-1) - lambda u(r-1), in Omega,u=0, on partial derivative Omega,where 1 < r < s <= 2, and lambda > 0. In particular, we answer to some questions posed in the recent paper [3] where this problem was considered.
2021
File in questo prodotto:
File Dimensione Formato  
anello ejde 2021.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 321.46 kB
Formato Adobe PDF
321.46 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3207136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact