Spores from Bacillus horneckiae SBP3 (SBP3) of shallow hydrothermal vent origin have recently been reported to survive extreme conditions more often than their close phylogenetic relatives B. horneckiae DSM 23495T (BHO) and B. subtilis 168 (BSU) used in biodosimetry and the space microbiology model. To investigate the structures of unheated spores, Fourier-transform infrared spectroscopy (FTIR) analysis was used. The FTIR spectra of the spores from the strains SBP3, BHO and BSU mainly differed in the region that referred to lipids and amino acids or polypeptides, indicating that the SBP3 spores were richer in saturated fatty acids, and the protein structures of SBP3 and BHO spores were more aggregated and complex than those of BSU. SBP3 spores were more resistant (LD90 = 4.2 ± 0.3 min) to wet heat treatment (98◦ C) than BHO (LD90 = 1.8 ± 0.2 min) and BSU (LD90 = 2.9 ± 0.5 min) spores were. In comparison to the untreated spores, the Raman spectra of the wet-heat-treated SBP3 spores showed minor variations in the bands that referred to proteins, whereas major changes were observed in the bands that referred to lipids and amide I in the heated BSU spores and to both lipids and proteins bands in the treated BHO spores. These results suggest that the major stability of SBP3 spore proteins could explain their greater resistance to wet heat compared to BHO and BSU. Our findings provide basic information for further comparative studies into spore responses to natural and laboratory stresses, which are useful in several different fields, such as astrobiology.

Hot resistance of spores from the thermophilic bacillus horneckiae sbp3 of shallow hydrothermal vent origin elucidated by spectroscopic analyses

Zammuto V.;Caccamo M. T.
;
Magazu S.;Spano A.;Guglielmino S.;Gugliandolo C.
2021-01-01

Abstract

Spores from Bacillus horneckiae SBP3 (SBP3) of shallow hydrothermal vent origin have recently been reported to survive extreme conditions more often than their close phylogenetic relatives B. horneckiae DSM 23495T (BHO) and B. subtilis 168 (BSU) used in biodosimetry and the space microbiology model. To investigate the structures of unheated spores, Fourier-transform infrared spectroscopy (FTIR) analysis was used. The FTIR spectra of the spores from the strains SBP3, BHO and BSU mainly differed in the region that referred to lipids and amino acids or polypeptides, indicating that the SBP3 spores were richer in saturated fatty acids, and the protein structures of SBP3 and BHO spores were more aggregated and complex than those of BSU. SBP3 spores were more resistant (LD90 = 4.2 ± 0.3 min) to wet heat treatment (98◦ C) than BHO (LD90 = 1.8 ± 0.2 min) and BSU (LD90 = 2.9 ± 0.5 min) spores were. In comparison to the untreated spores, the Raman spectra of the wet-heat-treated SBP3 spores showed minor variations in the bands that referred to proteins, whereas major changes were observed in the bands that referred to lipids and amide I in the heated BSU spores and to both lipids and proteins bands in the treated BHO spores. These results suggest that the major stability of SBP3 spore proteins could explain their greater resistance to wet heat compared to BHO and BSU. Our findings provide basic information for further comparative studies into spore responses to natural and laboratory stresses, which are useful in several different fields, such as astrobiology.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3207482
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact