Objectives: Externalization of deep brain stimulation (DBS) leads is performed to allow electrophysiological recording from implanted electrodes as well as assessment of clinical response to trial stimulation before implantable pulse generator (IPG) insertion. Hypothetically, lead externalization provides a route for inoculation and subsequent infection of hardware, though this has not been established definitively in the literature. We sought to determine if lead externalization affects the risk of infection in DBS surgery. Materials and Methods: We present our center's experience of lead externalization and surgical site infection (SSI) in DBS surgery for movement disorders. Patients were divided into two cohorts: one in which leads were not externalized and IPGs were implanted at the time of electrode insertion, and one in which leads were externalized for six days while patients underwent electrophysiological recording from DBS electrodes for research. We compare baseline characteristics of these two cohorts and their SSI rates. Results: Infective complications were experienced by 3/82 (3.7%) patients overall with one (1.2%) requiring complete hardware removal. These occurred in 1/36 (2.7%) in the externalized cohort and 2/46 (4.3%) in the nonexternalized cohort. The incidence of infection between the two cohorts was not significantly different (p = 1, two-tailed Fisher's exact test). This lack of significant difference persisted when baseline variation between the cohorts in age, hardware manufacturer, and indication for DBS were corrected by excluding patients implanted for dystonia, none of whom underwent externalization. We present and discuss in detail each of the three cases of infection. Conclusions: Our data suggest that externalization of leads does not increase the risk of infective complications in DBS surgery. Lead externalization is a safe procedure which can provide a substrate for unique neurophysiological studies to advance knowledge and therapy of disorders treated with DBS.

Postoperative Externalization of Deep Brain Stimulation Leads Does Not Increase Infection Risk

Morgante F.;
2021-01-01

Abstract

Objectives: Externalization of deep brain stimulation (DBS) leads is performed to allow electrophysiological recording from implanted electrodes as well as assessment of clinical response to trial stimulation before implantable pulse generator (IPG) insertion. Hypothetically, lead externalization provides a route for inoculation and subsequent infection of hardware, though this has not been established definitively in the literature. We sought to determine if lead externalization affects the risk of infection in DBS surgery. Materials and Methods: We present our center's experience of lead externalization and surgical site infection (SSI) in DBS surgery for movement disorders. Patients were divided into two cohorts: one in which leads were not externalized and IPGs were implanted at the time of electrode insertion, and one in which leads were externalized for six days while patients underwent electrophysiological recording from DBS electrodes for research. We compare baseline characteristics of these two cohorts and their SSI rates. Results: Infective complications were experienced by 3/82 (3.7%) patients overall with one (1.2%) requiring complete hardware removal. These occurred in 1/36 (2.7%) in the externalized cohort and 2/46 (4.3%) in the nonexternalized cohort. The incidence of infection between the two cohorts was not significantly different (p = 1, two-tailed Fisher's exact test). This lack of significant difference persisted when baseline variation between the cohorts in age, hardware manufacturer, and indication for DBS were corrected by excluding patients implanted for dystonia, none of whom underwent externalization. We present and discuss in detail each of the three cases of infection. Conclusions: Our data suggest that externalization of leads does not increase the risk of infective complications in DBS surgery. Lead externalization is a safe procedure which can provide a substrate for unique neurophysiological studies to advance knowledge and therapy of disorders treated with DBS.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3207743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact