In this Letter a first-order Lagrangian for the Schroedinger–Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schroedinger–Newton equations, Nonlinearity 19(7) (2006) 1507–1514] in order to find conservation laws of the Schroedinger–Newton equations.

Conservation laws for the Schrödinger-Newton equations

M. C. NUCCI
2012-01-01

Abstract

In this Letter a first-order Lagrangian for the Schroedinger–Newton equations is derived by modifying a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys. Rev. D 56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the Schroedinger–Newton equations, Nonlinearity 19(7) (2006) 1507–1514] in order to find conservation laws of the Schroedinger–Newton equations.
2012
File in questo prodotto:
File Dimensione Formato  
3208220.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3208220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact