Endometriosis is a common gynecological disease. Here, we aimed to investigate the anti-fibrotic, anti-inflammatory, and anti-oxidative role of the methyl ester of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO-Me) on endometriosis. An endometriosis rat model was constructed by intraperitoneally injecting recipient rats with an equivalent of tissue from the uterus of a donor animal. Endometriosis was allowed to develop for seven days. CDDO-Me was administered on the 7th day and for the next 7 days. On day 14, rats were sacrificed, and peritoneal fluid and en-dometriotic implants were collected. CDDO-Me displayed antioxidant activity by activating the Nfr2 pathway and the expression of antioxidant mediators such as NQO-1 and HO-1. Moreover, it reduced lipid peroxidation and increased glutathione (GSH) levels and superoxide dismutase (SOD) activity. CDDO-Me also showed anti-inflammatory activity by decreasing the expression of pro-inflammatory cytokines in peritoneal fluids and NFkB activation. It, in turn, reduced cyclooxygenase-2 (COX-2) expression in the endometriotic loci and prostaglandin E2 (PGE2) levels in the peritoneal fluids, leading to increased apoptosis and reduced angiogenesis. The reduced oxidative stress and pro-inflammatory microenvironment decreased implants diameter, area, and volume. In particular, CDDO-Me administration reduced the histopathological signs of endometriosis and inflammatory cells recruitment into the lesions, as shown by toluidine blue staining and myeloperoxidase (MPO) activity. CDDO-Me strongly suppressed α-SMA and fibronectin expression and collagen deposi-tion, reducing endometriosis-associated fibrosis. In conclusion, CDDO-Me treatment resulted in a coordinated and effective suppression of endometriosis by modulating the Nrf2 and NFkB pathways.

The methyl ester of 2-cyano-3,12-dioxooleana-1,9-dien-28-Oic acid reduces endometrial lesions development by modulating the NFkB and Nrf2 pathways

Siracusa R.;D'amico R.;Cordaro M.;Peritore A. F.;Genovese T.;Gugliandolo E.;Crupi R.;Impellizzeri D.;Cuzzocrea S.;Fusco R.;Di Paola R.
2021-01-01

Abstract

Endometriosis is a common gynecological disease. Here, we aimed to investigate the anti-fibrotic, anti-inflammatory, and anti-oxidative role of the methyl ester of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO-Me) on endometriosis. An endometriosis rat model was constructed by intraperitoneally injecting recipient rats with an equivalent of tissue from the uterus of a donor animal. Endometriosis was allowed to develop for seven days. CDDO-Me was administered on the 7th day and for the next 7 days. On day 14, rats were sacrificed, and peritoneal fluid and en-dometriotic implants were collected. CDDO-Me displayed antioxidant activity by activating the Nfr2 pathway and the expression of antioxidant mediators such as NQO-1 and HO-1. Moreover, it reduced lipid peroxidation and increased glutathione (GSH) levels and superoxide dismutase (SOD) activity. CDDO-Me also showed anti-inflammatory activity by decreasing the expression of pro-inflammatory cytokines in peritoneal fluids and NFkB activation. It, in turn, reduced cyclooxygenase-2 (COX-2) expression in the endometriotic loci and prostaglandin E2 (PGE2) levels in the peritoneal fluids, leading to increased apoptosis and reduced angiogenesis. The reduced oxidative stress and pro-inflammatory microenvironment decreased implants diameter, area, and volume. In particular, CDDO-Me administration reduced the histopathological signs of endometriosis and inflammatory cells recruitment into the lesions, as shown by toluidine blue staining and myeloperoxidase (MPO) activity. CDDO-Me strongly suppressed α-SMA and fibronectin expression and collagen deposi-tion, reducing endometriosis-associated fibrosis. In conclusion, CDDO-Me treatment resulted in a coordinated and effective suppression of endometriosis by modulating the Nrf2 and NFkB pathways.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3208358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 26
social impact