Direct detection experiments aim at the detection of dark matter in the form of weakly interacting massive particles (WIMPs) by searching for signals from elastic dark matter nucleus scattering. Additionally, inelastic scattering in which the nucleus is excited is expected from nuclear physics and provides an additional detectable signal. In the context of a low-energy effective field theory we investigate the experimental reach to these inelastic transitions for xenon-based detectors employing a dual-phase time projection chamber. We find that once a dark matter signal is established, inelastic transitions enhance the discovery reach and we show that they allow a better determination of the underlying particle physics.

Inelastic dark matter nucleus scattering

Arcadi G.;
2019-01-01

Abstract

Direct detection experiments aim at the detection of dark matter in the form of weakly interacting massive particles (WIMPs) by searching for signals from elastic dark matter nucleus scattering. Additionally, inelastic scattering in which the nucleus is excited is expected from nuclear physics and provides an additional detectable signal. In the context of a low-energy effective field theory we investigate the experimental reach to these inelastic transitions for xenon-based detectors employing a dual-phase time projection chamber. We find that once a dark matter signal is established, inelastic transitions enhance the discovery reach and we show that they allow a better determination of the underlying particle physics.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3209753
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact