The ATLAS and CMS collaborations have recently released their new analyses of the diphoton searches. We look in detail the consequences of their results deriving strong constraints on models where a scalar resonance s decays into two light pseudoscalars which in turn decay into two pairs of collimated photons, mis-identified with two real photons. In our construction, all mass terms are generated dynamically, and only one pair of vector-like fermions generate couplings which will be probed using the upcoming LHC data. Moreover, we show that a stable dark matter candidate, respecting the cosmological constraints, is naturally affordable in the model.

Scrutinizing a di-photon resonance at the LHC through Moscow zero

Arcadi G.
;
2016-01-01

Abstract

The ATLAS and CMS collaborations have recently released their new analyses of the diphoton searches. We look in detail the consequences of their results deriving strong constraints on models where a scalar resonance s decays into two light pseudoscalars which in turn decay into two pairs of collimated photons, mis-identified with two real photons. In our construction, all mass terms are generated dynamically, and only one pair of vector-like fermions generate couplings which will be probed using the upcoming LHC data. Moreover, we show that a stable dark matter candidate, respecting the cosmological constraints, is naturally affordable in the model.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3209807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact