The black hole binary, V404 Cygni, went into outburst in 2015 June, after 26 years of X-ray quiescence. We observed the outburst with the Neil Gehrels Swift observatory. We present optical/UV observations taken with the Swift Ultra-violet Optical Telescope, and compare them with the X-ray observations obtained with the Swift X-ray Telescope. We find that dust extinction affecting the optical/UV does not correlate with absorption due to neutral hydrogen that affects the X-ray emission. We suggest there is a small inhomogeneous high-density absorber containing a negligible amount of dust, close to the black hole. Overall, temporal variations in the optical/UV appear to trace those in the X-rays. During some epochs we observe an optical time-lag of (15-35) s. For both the optical/UV and X-rays, the amplitude of the variations correlates with flux, but this correlation is less significant in the optical/UV. The variability in the light curves may be produced by a complex combination of processes. Some of the X-ray variability may be due to the presence of a local, inhomogeneous and dust-free absorber, while variability visible in both the X-ray and optical/UV may instead be driven by the accretion flow: the X-rays are produced in the inner accretion disc, some of which are reprocessed to the optical/UV; and/or the X-ray and optical/UV emission is produced within the jet.

Swift UVOT observations of the 2015 outburst of V404 Cygni

De Pasquale, M.;
2019-01-01

Abstract

The black hole binary, V404 Cygni, went into outburst in 2015 June, after 26 years of X-ray quiescence. We observed the outburst with the Neil Gehrels Swift observatory. We present optical/UV observations taken with the Swift Ultra-violet Optical Telescope, and compare them with the X-ray observations obtained with the Swift X-ray Telescope. We find that dust extinction affecting the optical/UV does not correlate with absorption due to neutral hydrogen that affects the X-ray emission. We suggest there is a small inhomogeneous high-density absorber containing a negligible amount of dust, close to the black hole. Overall, temporal variations in the optical/UV appear to trace those in the X-rays. During some epochs we observe an optical time-lag of (15-35) s. For both the optical/UV and X-rays, the amplitude of the variations correlates with flux, but this correlation is less significant in the optical/UV. The variability in the light curves may be produced by a complex combination of processes. Some of the X-ray variability may be due to the presence of a local, inhomogeneous and dust-free absorber, while variability visible in both the X-ray and optical/UV may instead be driven by the accretion flow: the X-rays are produced in the inner accretion disc, some of which are reprocessed to the optical/UV; and/or the X-ray and optical/UV emission is produced within the jet.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3210160
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact