In this paper, we examine the existence of multiple solutions of parametric fractional equations involving the square root of the Laplacian A1/2 in a smooth bounded domain Ω ⊂ Rn (n ≥ 2) and with Dirichlet zero-boundary conditions, i.e. (Formula presented.) The existence of at least three L∞-bounded weak solutions is established for certain values of the parameter » requiring that the nonlinear term f is continuous and with a suitable growth. Our approach is based on variational arguments and a variant of Caffarelli–Silvestre’s extension method.

Multiple solutions of nonlinear equations involving the square root of the Laplacian

Vilasi L.
2017

Abstract

In this paper, we examine the existence of multiple solutions of parametric fractional equations involving the square root of the Laplacian A1/2 in a smooth bounded domain Ω ⊂ Rn (n ≥ 2) and with Dirichlet zero-boundary conditions, i.e. (Formula presented.) The existence of at least three L∞-bounded weak solutions is established for certain values of the parameter » requiring that the nonlinear term f is continuous and with a suitable growth. Our approach is based on variational arguments and a variant of Caffarelli–Silvestre’s extension method.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/3210621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact