Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics, such as oxaliplatin (L-OHP). The aim of the present work was to evaluate the potential beneficial effects of 2-pentadecyl-2-oxazoline (PEA-OXA) in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). OIPN was induced by an intraperitoneally injection of L-OHP in rats on five consecutive days (D0–4) for a final cumulative dose of 10 mg/kg. PEA-OXA and ultramicronized palmitoylethanolamide (PEAum), both 10 mg/kg, were given orally 15–20 min prior (L-OHP) and sacrifice was made on day 25. Our results demonstrated that PEA-OXA, more than PEAum, reduced the development of hypersensitivity in rats; this was associated with the reduction in hyperactivation of glia cells and the increased production of proinflammatory cytokines in the dorsal horn of the spinal cord, accompanied by an upregulation of neurotrophic factors in the dorsal root ganglia (DRG). Moreover, we showed that PEA-OXA reduced L-OHP damage via a reduction in NF-κB pathway activation and a modulation of Nrf-2 pathways. Our findings identify PEA-OXA as a therapeutic target in chemotherapy-induced painful neuropathy, through the biomolecular signaling NF-κB/Nrf-2 axis, thanks to its abilities to counteract L-OHP damage. Therefore, we can consider PEA-OXA as a promising adjunct to chemotherapy to reduce chronic pain in patients.

Pea-oxa mitigates oxaliplatin-induced painful neuropathy through nf-κb/nrf-2 axis

Campolo M.
Primo
;
Lanza M.
Secondo
;
Paterniti I.;Filippone A.;Ardizzone A.;Casili G.;Scuderi S. A.;Mare M.;Cuzzocrea S.
Penultimo
;
Esposito E.
Ultimo
2021-01-01

Abstract

Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics, such as oxaliplatin (L-OHP). The aim of the present work was to evaluate the potential beneficial effects of 2-pentadecyl-2-oxazoline (PEA-OXA) in a murine model of oxaliplatin-induced peripheral neuropathy (OIPN). OIPN was induced by an intraperitoneally injection of L-OHP in rats on five consecutive days (D0–4) for a final cumulative dose of 10 mg/kg. PEA-OXA and ultramicronized palmitoylethanolamide (PEAum), both 10 mg/kg, were given orally 15–20 min prior (L-OHP) and sacrifice was made on day 25. Our results demonstrated that PEA-OXA, more than PEAum, reduced the development of hypersensitivity in rats; this was associated with the reduction in hyperactivation of glia cells and the increased production of proinflammatory cytokines in the dorsal horn of the spinal cord, accompanied by an upregulation of neurotrophic factors in the dorsal root ganglia (DRG). Moreover, we showed that PEA-OXA reduced L-OHP damage via a reduction in NF-κB pathway activation and a modulation of Nrf-2 pathways. Our findings identify PEA-OXA as a therapeutic target in chemotherapy-induced painful neuropathy, through the biomolecular signaling NF-κB/Nrf-2 axis, thanks to its abilities to counteract L-OHP damage. Therefore, we can consider PEA-OXA as a promising adjunct to chemotherapy to reduce chronic pain in patients.
File in questo prodotto:
File Dimensione Formato  
3210784.pdf

accesso aperto

Descrizione: PEA-OXA Mitigates Oxaliplatin-Induced Painful Neuropathy through NF-κB/Nrf-2 Axis
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3210784
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact