We propose a protocol for bosonic binomial-code nonadiabatic holonomic quantum computation in a system composed of an artificial atom ultrastrongly coupled to a cavity resonator. In our protocol, the binomial codes, formed by superpositions of Fock states, can greatly save physical resources to correct errors in quantum computation. We apply to the system strong driving fields designed by shortcuts-to-adiabatic methods. This reduces the gate time to tens of nanoseconds. Noise induced by control imperfections can be suppressed by a systematic-error-sensitivity nullification method. As a result, this protocol can rapidly (similar to 35 ns) generate fault-tolerant and high-fidelity (greater than or similar to 98% with experimentally realistic parameters) quantum gates.
Fast binomial-code holonomic quantum computation with ultrastrong light-matter coupling
Roberto Stassi;
2021-01-01
Abstract
We propose a protocol for bosonic binomial-code nonadiabatic holonomic quantum computation in a system composed of an artificial atom ultrastrongly coupled to a cavity resonator. In our protocol, the binomial codes, formed by superpositions of Fock states, can greatly save physical resources to correct errors in quantum computation. We apply to the system strong driving fields designed by shortcuts-to-adiabatic methods. This reduces the gate time to tens of nanoseconds. Noise induced by control imperfections can be suppressed by a systematic-error-sensitivity nullification method. As a result, this protocol can rapidly (similar to 35 ns) generate fault-tolerant and high-fidelity (greater than or similar to 98% with experimentally realistic parameters) quantum gates.File | Dimensione | Formato | |
---|---|---|---|
PhysRevResearch.3.033275.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.