Let G be the circulant graph C-n(S) with S subset of {1, ..., left perpendicular n/2 right perpendicular} and let Delta be its independence complex. We describe the well-covered circulant graphs with 2-dimensional Delta, and construct an infinite family of vertex-decomposable circulant graphs within this family. Moreover, we show that if C-n(S) has a 2-dimensional vertex decomposable Delta, then it has a level Stanley-Reisner ring.

2-Dimensional vertex decomposable circulant graphs

Rinaldo, G;
2020-01-01

Abstract

Let G be the circulant graph C-n(S) with S subset of {1, ..., left perpendicular n/2 right perpendicular} and let Delta be its independence complex. We describe the well-covered circulant graphs with 2-dimensional Delta, and construct an infinite family of vertex-decomposable circulant graphs within this family. Moreover, we show that if C-n(S) has a 2-dimensional vertex decomposable Delta, then it has a level Stanley-Reisner ring.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3211920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact