Let (R, m) be a standard graded K-algebra over a field K. Then R can be written as S/I, whereI ⊆(x1,...,xn) isagradedidealofapolynomialringS =K[x1,...,xn]. Assume that n > 3 and I is a strongly stable monomial ideal. We study the symmetric algebra SymR(Syz1(m)) of the first syzygy module Syz1(m) of m. When the minimal gen- erators of I are all of degree 2, the dimension of SymR(Syz1(m)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
On the symmetric algebra of certain first syzygy modules
Utano, RosannaUltimo
Membro del Collaboration Group
;Tang, Zhongming
Secondo
Membro del Collaboration Group
;Restuccia, GaetanaPrimo
Membro del Collaboration Group
2022-01-01
Abstract
Let (R, m) be a standard graded K-algebra over a field K. Then R can be written as S/I, whereI ⊆(x1,...,xn) isagradedidealofapolynomialringS =K[x1,...,xn]. Assume that n > 3 and I is a strongly stable monomial ideal. We study the symmetric algebra SymR(Syz1(m)) of the first syzygy module Syz1(m) of m. When the minimal gen- erators of I are all of degree 2, the dimension of SymR(Syz1(m)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Finale_cmj72_2_6.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
195.8 kB
Formato
Adobe PDF
|
195.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.