Let (R, m) be a standard graded K-algebra over a field K. Then R can be written as S/I, whereI ⊆(x1,...,xn) isagradedidealofapolynomialringS =K[x1,...,xn]. Assume that n > 3 and I is a strongly stable monomial ideal. We study the symmetric algebra SymR(Syz1(m)) of the first syzygy module Syz1(m) of m. When the minimal gen- erators of I are all of degree 2, the dimension of SymR(Syz1(m)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.

On the symmetric algebra of certain first syzygy modules

Utano, Rosanna
Ultimo
Membro del Collaboration Group
;
Tang, Zhongming
Secondo
Membro del Collaboration Group
;
Restuccia, Gaetana
Primo
Membro del Collaboration Group
2022-01-01

Abstract

Let (R, m) be a standard graded K-algebra over a field K. Then R can be written as S/I, whereI ⊆(x1,...,xn) isagradedidealofapolynomialringS =K[x1,...,xn]. Assume that n > 3 and I is a strongly stable monomial ideal. We study the symmetric algebra SymR(Syz1(m)) of the first syzygy module Syz1(m) of m. When the minimal gen- erators of I are all of degree 2, the dimension of SymR(Syz1(m)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
2022
File in questo prodotto:
File Dimensione Formato  
Finale_cmj72_2_6.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 195.8 kB
Formato Adobe PDF
195.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3212166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact