Active Learning (AL) for Hyperspectral Image Classification (HSIC) has been extensively studied. However, the traditional AL methods do not consider randomness among the existing and new samples. Secondly, very limited AL research has been carried out on joint spectral-spatial information. Thirdly, a minor but still worth mentioning factor is the stopping criteria. Therefore, this study caters to all these issues using a spatial prior Fuzziness concept coupled with Multinomial Logistic Regression via a Splitting and Augmented Lagrangian (MLR-LORSAL) classifier with dual stopping criteria. This work further compares several sample selection methods with the diverse nature of classifiers i.e., probabilistic and non-probabilistic. The sample selection methods include Breaking Ties (BT), Mutual Information (MI) and Modified Breaking Ties (MBT). The comparative classifiers include Support Vector Machine (SVM), Extreme Learning Machine (ELM), K-Nearest Neighbour (KNN) and Ensemble Learning (EL). The experimental results on three benchmark hyperspectral datasets reveal that the proposed pipeline significantly increases the classification accuracy and generalization performance. To further validate the performance, several statistical tests are also considered such as Precision, Recall and F1-Score.

Multiclass non-randomized spectral-spatial active learning for hyperspectral image classification

Ahmad M.
;
Distefano S.
;
2020-01-01

Abstract

Active Learning (AL) for Hyperspectral Image Classification (HSIC) has been extensively studied. However, the traditional AL methods do not consider randomness among the existing and new samples. Secondly, very limited AL research has been carried out on joint spectral-spatial information. Thirdly, a minor but still worth mentioning factor is the stopping criteria. Therefore, this study caters to all these issues using a spatial prior Fuzziness concept coupled with Multinomial Logistic Regression via a Splitting and Augmented Lagrangian (MLR-LORSAL) classifier with dual stopping criteria. This work further compares several sample selection methods with the diverse nature of classifiers i.e., probabilistic and non-probabilistic. The sample selection methods include Breaking Ties (BT), Mutual Information (MI) and Modified Breaking Ties (MBT). The comparative classifiers include Support Vector Machine (SVM), Extreme Learning Machine (ELM), K-Nearest Neighbour (KNN) and Ensemble Learning (EL). The experimental results on three benchmark hyperspectral datasets reveal that the proposed pipeline significantly increases the classification accuracy and generalization performance. To further validate the performance, several statistical tests are also considered such as Precision, Recall and F1-Score.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3212214
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact