Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI classification (HSIC) is a challenging task due to high interclass similarity, high intraclass variability, overlapping, and nested regions. The 2-D convolutional neural network (CNN) is a viable classification approach since HSIC depends on both spectral-spatial information. The 3-D CNN is a good alternative for improving the accuracy of HSIC, but it can be computationally intensive due to the volume and spectral dimensions of HSI. Furthermore, these models may fail to extract quality feature maps and underperform over the regions having similar textures. This work proposes a 3-D CNN model that utilizes both spatial-spectral feature maps to improve the performance of HSIC. For this purpose, the HSI cube is first divided into small overlapping 3-D patches, which are processed to generate 3-D feature maps using a 3-D kernel function over multiple contiguous bands of the spectral information in a computationally efficient way. In brief, our end-to-end trained model requires fewer parameters to significantly reduce the convergence time while providing better accuracy than existing models. The results are further compared with several state-of-the-art 2-D/3-D CNN models, demonstrating remarkable performance both in terms of accuracy and computational time.

A Fast and Compact 3-D CNN for Hyperspectral Image Classification

Ahmad M.
;
Distefano S.
;
2020-01-01

Abstract

Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI classification (HSIC) is a challenging task due to high interclass similarity, high intraclass variability, overlapping, and nested regions. The 2-D convolutional neural network (CNN) is a viable classification approach since HSIC depends on both spectral-spatial information. The 3-D CNN is a good alternative for improving the accuracy of HSIC, but it can be computationally intensive due to the volume and spectral dimensions of HSI. Furthermore, these models may fail to extract quality feature maps and underperform over the regions having similar textures. This work proposes a 3-D CNN model that utilizes both spatial-spectral feature maps to improve the performance of HSIC. For this purpose, the HSI cube is first divided into small overlapping 3-D patches, which are processed to generate 3-D feature maps using a 3-D kernel function over multiple contiguous bands of the spectral information in a computationally efficient way. In brief, our end-to-end trained model requires fewer parameters to significantly reduce the convergence time while providing better accuracy than existing models. The results are further compared with several state-of-the-art 2-D/3-D CNN models, demonstrating remarkable performance both in terms of accuracy and computational time.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3212216
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 130
  • ???jsp.display-item.citation.isi??? ND
social impact