Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI classification (HSIC) is a challenging task due to high interclass similarity, high intraclass variability, overlapping, and nested regions. The 2-D convolutional neural network (CNN) is a viable classification approach since HSIC depends on both spectral-spatial information. The 3-D CNN is a good alternative for improving the accuracy of HSIC, but it can be computationally intensive due to the volume and spectral dimensions of HSI. Furthermore, these models may fail to extract quality feature maps and underperform over the regions having similar textures. This work proposes a 3-D CNN model that utilizes both spatial-spectral feature maps to improve the performance of HSIC. For this purpose, the HSI cube is first divided into small overlapping 3-D patches, which are processed to generate 3-D feature maps using a 3-D kernel function over multiple contiguous bands of the spectral information in a computationally efficient way. In brief, our end-to-end trained model requires fewer parameters to significantly reduce the convergence time while providing better accuracy than existing models. The results are further compared with several state-of-the-art 2-D/3-D CNN models, demonstrating remarkable performance both in terms of accuracy and computational time.
A Fast and Compact 3-D CNN for Hyperspectral Image Classification
Ahmad M.
Primo
;Distefano S.;
2022-01-01
Abstract
Hyperspectral images (HSIs) are used in a large number of real-world applications. HSI classification (HSIC) is a challenging task due to high interclass similarity, high intraclass variability, overlapping, and nested regions. The 2-D convolutional neural network (CNN) is a viable classification approach since HSIC depends on both spectral-spatial information. The 3-D CNN is a good alternative for improving the accuracy of HSIC, but it can be computationally intensive due to the volume and spectral dimensions of HSI. Furthermore, these models may fail to extract quality feature maps and underperform over the regions having similar textures. This work proposes a 3-D CNN model that utilizes both spatial-spectral feature maps to improve the performance of HSIC. For this purpose, the HSI cube is first divided into small overlapping 3-D patches, which are processed to generate 3-D feature maps using a 3-D kernel function over multiple contiguous bands of the spectral information in a computationally efficient way. In brief, our end-to-end trained model requires fewer parameters to significantly reduce the convergence time while providing better accuracy than existing models. The results are further compared with several state-of-the-art 2-D/3-D CNN models, demonstrating remarkable performance both in terms of accuracy and computational time.File | Dimensione | Formato | |
---|---|---|---|
2020-grsl-A_Fast_and_Compact_3-D_CNN_for_Hyperspectral_Image_Classification.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
A_Fast_and_Compact_3-D_CNN_for_Hyperspectral_Image_Classification.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.