The Caspian seal Pusa caspica is the only endemic mammalian species throughout the Caspian Sea. This is the first report on risk assessment of persistent organic pollutants (POPs) in Caspian seals by age-sex and tissue-specific uptake, and their surrounding environment (seawater, surface sediments, and suspended particulate matters, SPMs) in the Gorgan Bay (Caspian Sea, Iran). Among the quantified 70 POPs (∑35PCBs, ∑3HCHs, ∑6CHLs, ∑6DDTs, ∑17PCDD/Fs, HCB, dieldrin, and aldrin), ∑35PCBs were dominant in abiotic matrices (48.80% of ∑70POPs), followed by HCHs > CHLs > DDTs > PCDD/Fs > other POPs in surface sediments > SPMs > seawater, while the toxic equivalent quantity (TEQWHO) exceeded the safe value (possible risk in this area). In biota, the highest levels of ∑70POPs were found in males (756.3 ng g−1 dw, p < 0.05), followed by females (419.0 ng g−1 dw) and pups (191.6 ng g−1 dw) in liver > kidney > muscle > blubber > intestine > fur > heart > spleen > brain. The positive age-related POPs declining correlation between mother–pup pairs suggested the possible maternal transfer of POPs to offspring. The cocktail toxicity assessment revealed that Caspian seals can pose a low risk based on their mixed-TEQ values. Self-organizing map (SOM) indicated the non-coplanar PCB-93 as the most over-represented functional congener in tissue-specific POPs bioaccumulation. Quantitative toxicant tissue-profiling is valuable for predicting the state of mixture toxicity in pinniped species.

Emerging POPs-type cocktail signatures in Pusa caspica in quantitative structure-activity relationship of Caspian Sea

Cappello T.
Ultimo
2021-01-01

Abstract

The Caspian seal Pusa caspica is the only endemic mammalian species throughout the Caspian Sea. This is the first report on risk assessment of persistent organic pollutants (POPs) in Caspian seals by age-sex and tissue-specific uptake, and their surrounding environment (seawater, surface sediments, and suspended particulate matters, SPMs) in the Gorgan Bay (Caspian Sea, Iran). Among the quantified 70 POPs (∑35PCBs, ∑3HCHs, ∑6CHLs, ∑6DDTs, ∑17PCDD/Fs, HCB, dieldrin, and aldrin), ∑35PCBs were dominant in abiotic matrices (48.80% of ∑70POPs), followed by HCHs > CHLs > DDTs > PCDD/Fs > other POPs in surface sediments > SPMs > seawater, while the toxic equivalent quantity (TEQWHO) exceeded the safe value (possible risk in this area). In biota, the highest levels of ∑70POPs were found in males (756.3 ng g−1 dw, p < 0.05), followed by females (419.0 ng g−1 dw) and pups (191.6 ng g−1 dw) in liver > kidney > muscle > blubber > intestine > fur > heart > spleen > brain. The positive age-related POPs declining correlation between mother–pup pairs suggested the possible maternal transfer of POPs to offspring. The cocktail toxicity assessment revealed that Caspian seals can pose a low risk based on their mixed-TEQ values. Self-organizing map (SOM) indicated the non-coplanar PCB-93 as the most over-represented functional congener in tissue-specific POPs bioaccumulation. Quantitative toxicant tissue-profiling is valuable for predicting the state of mixture toxicity in pinniped species.
2021
File in questo prodotto:
File Dimensione Formato  
HAZMAT - Ranjbar Jafarabadi et al. 2021.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 9.35 MB
Formato Adobe PDF
9.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3212290
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact