Fels’ conditions (Fels, M. E. 1996 Trans. Amer. Math. Soc. 348, 5007–5029. (doi:10.1090/ S0002-9947-96-01720-5)) ensure the existence and uniqueness of the Lagrangian in the case of a fourth-order equation. We show that when Fels’ conditions are satisfied, the Lagrangian can be derived from the Jacobi last multiplier, as in the case of a secondorder equation. Indeed, we prove that if a Lagrangian exists for an equation of any even order, then it can be derived from the Jacobi last multiplier. Two equations from a Number Theory paper by Hall (Hall, R. R. 2002 J. Number Theory 93, 235–245. (doi:10.1006/jnth.2001.2719)), one of the second and one of the fourth order, will be used to exemplify the method. The known link between Jacobi last multiplier and Lie symmetries is also exploited. Finally, the Lagrangians of two fourth-order equations drawn from Physics are determined with the same method.
On the inverse problem of calculus of variations for fourth-order equations
NUCCI, Maria Clara;
2010-01-01
Abstract
Fels’ conditions (Fels, M. E. 1996 Trans. Amer. Math. Soc. 348, 5007–5029. (doi:10.1090/ S0002-9947-96-01720-5)) ensure the existence and uniqueness of the Lagrangian in the case of a fourth-order equation. We show that when Fels’ conditions are satisfied, the Lagrangian can be derived from the Jacobi last multiplier, as in the case of a secondorder equation. Indeed, we prove that if a Lagrangian exists for an equation of any even order, then it can be derived from the Jacobi last multiplier. Two equations from a Number Theory paper by Hall (Hall, R. R. 2002 J. Number Theory 93, 235–245. (doi:10.1006/jnth.2001.2719)), one of the second and one of the fourth order, will be used to exemplify the method. The known link between Jacobi last multiplier and Lie symmetries is also exploited. Finally, the Lagrangians of two fourth-order equations drawn from Physics are determined with the same method.File | Dimensione | Formato | |
---|---|---|---|
artnuc10f.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
298.96 kB
Formato
Adobe PDF
|
298.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.