The classical MICZ-Kepler problem is shown to be reducible to an isotropic two-dimensional system of linear harmonic oscillators and a conservation law in terms of new variables related to the Ermanno-Bernoulli constants and the components of the Poincare vector. An algorithmic route to linearization is shown based on Lie symmetry analysis and the reduction method [Nucci, J. Math. Phys. 37, 1772 (1996) ]. First integrals are also obtained by symmetry analysis and the reduction method [Marcelli and Nucci,J. Math. Phys. 44, 2111 (2002) ].

Reduction of the classical MICZ-Kepler problem to a two-dimensional linear isotropic harmonic oscillator

NUCCI, Maria Clara
2004-01-01

Abstract

The classical MICZ-Kepler problem is shown to be reducible to an isotropic two-dimensional system of linear harmonic oscillators and a conservation law in terms of new variables related to the Ermanno-Bernoulli constants and the components of the Poincare vector. An algorithmic route to linearization is shown based on Lie symmetry analysis and the reduction method [Nucci, J. Math. Phys. 37, 1772 (1996) ]. First integrals are also obtained by symmetry analysis and the reduction method [Marcelli and Nucci,J. Math. Phys. 44, 2111 (2002) ].
2004
File in questo prodotto:
File Dimensione Formato  
3212432.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 446.76 kB
Formato Adobe PDF
446.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3212432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact