There is limited information on fluoride toxicity and risk overview on ecotoxicological risks to aquatic inver- tebrate populations particularly molluscan taxa. This necessitated the assessment of toxicity responses in the freshwater snail, Bellamya bengalensis exposed to environmentally relevant concentrations of sodium fluoride. Under lethal exposures (150, 200, 250, 300, 400 and 450 mg/l), the median lethal concentrations (LC50) were determined to be 422.36, 347.10, 333.33 and 273.24 mg/l for B. bengalensis at 24, 48, 72 and 96 h respectively. The rate of mortality of the snails was increased significantly with elevated concentrations of the toxicant. The magnitude of toxicity i.e., toxicity factor at different time scale was also higher with increased exposure duration. Altered behavioural changes i.e., crawling movement, tentacle movement, clumping tendency, touch reflex and mucous secretion in exposed snail with elevated concentrations and exposure duration. Similarly, oxygen con- sumption rate of the treated snail also lowered significantly during 72 and 96 h of exposure. Under 30-day chronic exposures (Control-0.00 mg/L; T1–27.324 mg/L; T2–54.648 mg/L), protein concentrations in gonad and hepatopancreas of exposure groups was significantly lowered. Chronic exposures also revealed lowered haemocytes counts in exposure groups. The potential for loss of coordination, respiratory distress and physio- logical disruption in organisms exposed to environmentally relevant concentrations of fluoride was demonstrated by this study. The estimation and magnitude of toxicity responses are necessary for a more accurate estimation of ecological risks to molluscan taxa and invertebrate populations under acute and chronic fluoride exposures in the wild.

Fluoride sensitivity in freshwater snail, Bellamya bengalensis (Lamarck, 1882): An integrative biomarker response assessment of behavioral indices, oxygen consumption, haemocyte and tissue protein levels under environmentally relevant exposure concentrations

Faggio, Caterina
2022-01-01

Abstract

There is limited information on fluoride toxicity and risk overview on ecotoxicological risks to aquatic inver- tebrate populations particularly molluscan taxa. This necessitated the assessment of toxicity responses in the freshwater snail, Bellamya bengalensis exposed to environmentally relevant concentrations of sodium fluoride. Under lethal exposures (150, 200, 250, 300, 400 and 450 mg/l), the median lethal concentrations (LC50) were determined to be 422.36, 347.10, 333.33 and 273.24 mg/l for B. bengalensis at 24, 48, 72 and 96 h respectively. The rate of mortality of the snails was increased significantly with elevated concentrations of the toxicant. The magnitude of toxicity i.e., toxicity factor at different time scale was also higher with increased exposure duration. Altered behavioural changes i.e., crawling movement, tentacle movement, clumping tendency, touch reflex and mucous secretion in exposed snail with elevated concentrations and exposure duration. Similarly, oxygen con- sumption rate of the treated snail also lowered significantly during 72 and 96 h of exposure. Under 30-day chronic exposures (Control-0.00 mg/L; T1–27.324 mg/L; T2–54.648 mg/L), protein concentrations in gonad and hepatopancreas of exposure groups was significantly lowered. Chronic exposures also revealed lowered haemocytes counts in exposure groups. The potential for loss of coordination, respiratory distress and physio- logical disruption in organisms exposed to environmentally relevant concentrations of fluoride was demonstrated by this study. The estimation and magnitude of toxicity responses are necessary for a more accurate estimation of ecological risks to molluscan taxa and invertebrate populations under acute and chronic fluoride exposures in the wild.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3217003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 10
social impact